Placentalia


































Placental mammals
Temporal range: Paleocene-Holocene 66–0 Ma

PreЄ

Є

O

S

D

C

P

T

J

K

Pg

N







Suspected, but still not confirmed, early Cretaceous origin[1][2][3]


Eutheria.png
Placentals of each super-order.

Scientific classification edit
Kingdom:
Animalia
Phylum:
Chordata
Class:
Mammalia

Clade:

Eutheria
Infraclass:
Placentalia
Owen, 1837
Subgroups


  • Boreoeutheria

  • Atlantogenata



Placentalia ("Placentals") is one of the three extant subdivisions of the class of animals Mammalia; the other two are Monotremata and Marsupialia. The Placentals are partly distinguishable from other mammals in that the fetus is carried in the uterus of its mother to a relatively late stage of development. It is somewhat of a misnomer since marsupials also nourish their fetuses via a placenta.[4]




Contents






  • 1 Anatomical features


  • 2 Subdivisions


  • 3 Evolution


  • 4 References





Anatomical features


Placental mammals are anatomically distinguished from other mammals by:



  • a sufficiently wide opening at the bottom of the pelvis to allow the birth of a large baby relative to the size of the mother.[5]

  • the absence of epipubic bones extending forward from the pelvis, which are found in all other mammals.[6] (Their function in non-placental mammals is to stiffen the body during locomotion,[7] but in placentals they would inhibit the expansion of the abdomen during pregnancy.)[8]

  • the rearmost bones of the foot fit into a socket formed by the ends of the tibia and fibula, forming a complete mortise and tenon upper ankle joint.[9]

  • the presence of a malleolus at the bottom of the fibula.[9]



Subdivisions


Analysis of retroposon presence/absence patterns has provided a rapid, unequivocal means for revealing the evolutionary history of organisms: this has resulted in a revision in the classification of placentals.[10] There are now thought to be three major subdivisions or lineages of placental mammals: Boreoeutheria, Xenarthra, and Afrotheria, all of which diverged from common ancestors.


The orders of placental mammals in the three groups are:[11]



  • Magnorder Afrotheria (elephant shrews, tenrecs, golden moles, hyraxes, elephants, and manatees)

    • Superorder Afroinsectiphilia

      • Order Afrosoricida (tenrecs and golden moles)

      • Order Macroscelidea (elephant shrews)

      • Order Tubulidentata (aardvark)



    • Superorder Paenungulata

      • Order Hyracoidea (hyraxes)

      • Mirorder Tethytheria (elephants, dugongs, and manatees)

        • Order Proboscidea (elephants)

        • Order Sirenia (dugongs and manatees)







  • Magnorder Boreoeutheria

    • Superorder Euarchontoglires (treeshrews, colugos, primates, rabbits, hares, and rodents)

      • Grandorder Gliriformes
        • Mirorder Glires

          • Order Lagomorpha (rabbits, hares, and pikas)

          • Order Rodentia (rodents: mice, rats, voles, squirrels, beavers, etc.)




      • Grandorder Euarchonta

        • Order Scandentia (treeshrews)

        • Mirorder Primatomorpha

          • Order Dermoptera (colugos)

          • Order Primates (primates: humans, monkeys, apes, lemurs, lorises, etc.)







    • Superorder Laurasiatheria (hedgehogs, shrews, moles, whales, bats, dogs, cats, seals, and hoofed mammals)

      • Order Eulipotyphla (hedgehogs, gymnures, shrews, moles, and solenodons)

      • Order Chiroptera (bats)

      • Order Cetartiodactyla (even-toed ungulates: cattle, antelope, deer, camels, pigs, whales, etc.)

      • Order Perissodactyla (odd-toed ungulates: horses, donkeys, zebras, rhinoceroses, and tapirs)

      • Mirorder Ferae (pangolins, dogs, cats, bears, seals, mongooses, etc.)

        • Order Pholidota (pangolins)

        • Order Carnivora (carnivorans: dogs, cats, bears, seals, mongooses, etc.)







  • Magnorder Xenarthra (armadillos, anteaters, and sloths)

    • Order Cingulata (armadillos)

    • Order Pilosa (anteaters and sloths)




The exact relationships among these three lineages is currently a subject of debate, and three different hypotheses have been proposed with respect to which group is basal or diverged first from other placentals. These hypotheses are Atlantogenata (basal Boreoeutheria), Epitheria (basal Xenarthra), and Exafroplacentalia (basal Afrotheria).[12] Estimates for the divergence times among these three placental groups range from 105 to 120 million years ago (MYA), depending on the type of DNA (e.g. nuclear or mitochondrial)[13] and varying interpretations of paleogeographic data.[12]


.mw-parser-output table.clade{border-spacing:0;margin:0;font-size:100%;line-height:100%;border-collapse:separate;width:auto}.mw-parser-output table.clade table.clade{width:100%}.mw-parser-output table.clade td{border:0;padding:0;vertical-align:middle;text-align:center}.mw-parser-output table.clade td.clade-label{width:0.8em;border:0;padding:0 0.2em;vertical-align:bottom;text-align:center}.mw-parser-output table.clade td.clade-slabel{border:0;padding:0 0.2em;vertical-align:top;text-align:center}.mw-parser-output table.clade td.clade-bar{vertical-align:middle;text-align:left;padding:0 0.5em}.mw-parser-output table.clade td.clade-leaf{border:0;padding:0;text-align:left;vertical-align:middle}.mw-parser-output table.clade td.clade-leafR{border:0;padding:0;text-align:right}







Placentalia














Atlantogenata















Afrotheria





Xenarthra






Boreoeutheria














Euarchontoglires















Euarchonta





Glires






Laurasiatheria















Eulipotyphla




Scrotifera















Chiroptera




Ferungulata














Euungulata















Cetartiodactyla





Perissodactyla






Ferae















Pholidota





Carnivora
















Cladogram based on Amrine-Madsen, H. et al. (2003)[14] and Asher, R.J. et al. (2009)[15]



Evolution


True placental mammals (the crown group including all modern placentals) arose from stem-group members of the clade Eutheria, which had existed since at least the Middle Jurassic period, about 170 MYA). These early eutherians were small, nocturnal insect eaters, with adaptations for life in trees.[9]


True placentals may have originated in the Late Cretaceous around 90 MYA, but the earliest undisputed fossils are from the early Paleocene, 66 MYA, following the Cretaceous–Paleogene extinction event. The species Protungulatum donnae was thought to be a stem-ungulate [16] known 1 meter above the Cretaceous-Paleogene boundary in the geological stratum that marks the Cretaceous–Paleogene extinction event [17] and Purgatorius, previously considered a stem-primate, appears no more than 300,000 years after the K-Pg boundary;[18] both species, however, are now considered non-placental eutherians.[19] The rapid appearance of placentals after the mass extinction at the end of the Cretaceous suggests that the group had already originated and undergone an initial diversification in the Late Cretaceous, as suggested by molecular clocks.[3] The lineages leading to Xenarthra and Afrotheria probably originated around 90 MYA, and Boreoeutheria underwent an initial diversification around 70-80 MYA,[3] producing the lineages that eventually would lead to modern primates, rodents, insectivores, artiodactyls, and carnivorans.


However, modern members of the placental orders originated in the Paleogene around 66 to 23 MYA, following the Cretaceous–Paleogene extinction event. The evolution of crown orders such modern primates, rodents, and carnivores appears to be part of an adaptive radiation[20] that took place as mammals quickly evolved to take advantage of ecological niches that were left open when most dinosaurs and other animals disappeared following the Chicxulub asteroid impact. As they occupied new niches, mammals rapidly increased in body size, and began to take over the large herbivore and large carnivore niches that had been left open by the decimation of the dinosaurs. Mammals also exploited niches that the dinosaurs had never touched: for example, bats evolved flight and echolocation, allowing them to be highly effective nocturnal, aerial insectivores; and whales first occupied freshwater lakes and rivers and then moved into the oceans. Primates, meanwhile, acquired specialized grasping hands and feet which allowed them to grasp branches, and large eyes with keener vision which allowed them to forage in the dark.


The evolution of land placentals followed different pathways on different continents since they cannot easily cross large bodies of water. An exception is smaller placentals such as rodents and primates, who left Laurasia and colonized Africa and then South America via rafting.


In Africa, the Afrotheria underwent a major adaptive radiation, which led to elephants, elephant shrews, tenrecs, golden moles, aardvarks, and manatees. In South America a similar event occurred, with radiation of the Xenarthra, which led to modern sloths, anteaters, and armadillos, as well as the extinct ground sloths and glyptodonts. Expansion in Laurasia was dominated by Boreoeutheria, which includes primates and rodents, insectivores, carnivores, perissodactyls and artiodactyls. These groups expanded beyond a single continent when land bridges formed linking Africa to Eurasia and South America to North America.



References













  1. ^ https://www.ncbi.nlm.nih.gov/pmc/articles/PMC298725/


  2. ^ https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2655268/


  3. ^ abc dos Reis, M.; Inoue, J.; Hasegawa, M.; Asher, R.J.; Donoghue, P.C.J.; Yang, Z. (2012). "Phylogenomic datasets provide both precision and accuracy in estimating the timescale of placental mammal phylogeny". Proceedings of the Royal Society B. 279: 3491–3500. doi:10.1098/rspb.2012.0683. PMC 3396900. PMID 22628470..mw-parser-output cite.citation{font-style:inherit}.mw-parser-output q{quotes:"""""""'""'"}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-limited a,.mw-parser-output .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}


  4. ^ Renfree, M.B. (March 2010). "Review: Marsupials: placental mammals with a difference". Placenta. 31 Supplement: S21–6. doi:10.1016/j.placenta.2009.12.023. PMID 20079531.


  5. ^ Weil, A. (April 2002). "Mammalian evolution: Upwards and onwards". Nature. 416 (6883): 798–799. doi:10.1038/416798a. PMID 11976661. Retrieved 2008-09-24.


  6. ^ Reilly, S.M. & White, T.D. (January 2003). "Hypaxial Motor Patterns and the Function of Epipubic Bones in Primitive Mammals". Science. 299 (5605): 400–402. doi:10.1126/science.1074905. PMID 12532019. Retrieved 2008-09-24.


  7. ^ Reilly, S.M. & White, T.D. (January 2003). "Hypaxial Motor Patterns and the Function of Epipubic Bones in Primitive Mammals". Science. 299 (5605): 400–402. doi:10.1126/science.1074905. PMID 12532019. Retrieved 2008-09-24.


  8. ^ Novacek, M.J., Rougier, G.W, Wible, J.R., McKenna, M.C, Dashzeveg, D., and Horovitz, I. (October 1997). "Epipubic bones in eutherian mammals from the Late Cretaceous of Mongolia". Nature. 389 (6650): 483–486. doi:10.1038/39020. PMID 9333234. Retrieved 2008-09-24.CS1 maint: Multiple names: authors list (link)


  9. ^ abc Ji, Q., Luo, Z-X., Yuan, C-X., Wible, J.R., Zhang, J-P. and Georgi, J.A. (April 2002). "The earliest known eutherian mammal". Nature. 416 (6883): 816–822. doi:10.1038/416816a. PMID 11976675. Retrieved 2008-09-24.CS1 maint: Multiple names: authors list (link)


  10. ^ Kriegs, Jan Ole; Churakov, Gennady; Kiefmann, Martin; Jordan, Ursula; Brosius, Jürgen; Schmitz, Jürgen (2006). "Retroposed Elements as Archives for the Evolutionary History of Placental Mammals". PLoS Biology. 4 (4): e91. doi:10.1371/journal.pbio.0040091. PMC 1395351. PMID 16515367.


  11. ^ Archibald JD, Averianov AO, Ekdale EG (November 2001). "Late Cretaceous relatives of rabbits, rodents, and other extant eutherian mammals". Nature. 414 (6859): 62–5. doi:10.1038/35102048. PMID 11689942.


  12. ^ ab Nishihara, H.; Maruyama, S.; Okada, N. (2009). "Retroposon analysis and recent geological data suggest near-simultaneous divergence of the three superorders of mammals". Proceedings of the National Academy of Sciences. 106 (13): 5235–5240. doi:10.1073/pnas.0809297106. PMC 2655268. PMID 19286970.


  13. ^ Springer, Mark S.; Murphy, William J.; Eizirik, Eduardo; O'Brien, Stephen J. (2003). "Placental mammal diversification and the Cretaceous–Tertiary boundary". Proceedings of the National Academy of Sciences. 100 (3): 1056–1061. doi:10.1073/pnas.0334222100. PMC 298725. PMID 12552136.


  14. ^ Amrine-Madsen, H.; Koepfli, K.-P.; Wayne, R. K.; Springer, M. S. (2003). "A new phylogenetic marker, apoliprotein B, provides compelling evidence for eutherian relationships". Molecular Phylogenetics and Evolution. 28: 225–240. doi:10.1016/s1055-7903(03)00118-0. PMID 12878460.


  15. ^ Asher, R. J.; Bennett, N.; Lehmann, T. (2009). "The new framework for understanding placental mammal evolution". BioEssays. 31: 853–864. doi:10.1002/bies.200900053. PMID 19582725.


  16. ^ O'Leary, Maureen A.; Bloch, Jonathan I.; Flynn, John J.; Gaudin, Timothy J.; Giallombardo, Andres; Giannini, Norberto P.; Goldberg, Suzann L.; Kraatz, Brian P.; Luo, Zhe-Xi; Meng, Jin; Ni, Michael J.; Novacek, Fernando A.; Perini, Zachary S.; Randall, Guillermo; Rougier, Eric J.; Sargis, Mary T.; Silcox, Nancy b.; Simmons, Micelle; Spaulding, Paul M.; Velazco, Marcelo; Weksler, John r.; Wible, Andrea L.; Cirranello, A. L. (8 February 2013). "The Placental Mammal Ancestor and the Post–K-Pg Radiation of Placentals". Science. 339 (6120): 662–667. doi:10.1126/science.1229237. hdl:11336/7302. PMID 23393258. Retrieved 9 February 2013.


  17. ^ Archibald, J.D., 1982. A study of Mammalia and geology across the Cretaceous-Tertiary boundary in Garfield County, Montana. University of California Publications in Geological Sciences 122, 286.


  18. ^ Fox, R.C.; Scott, C.S. (2011). "A new, early Puercan (earliest Paleocene) species of Purgatorius (Plesiadapiformes, Primates) from Saskatchewan, Canada". Journal of Paleontology. 85: 537–548. doi:10.1666/10-059.1.


  19. ^ Halliday, Thomas J. D. (2015). "Resolving the relationships of Paleocene placental mammals". Biological Reviews. doi:10.1111/brv.12242.


  20. ^ Alroy, J (1999). "The fossil record of North American Mammals: evidence for a Palaeocene evolutionary radiation". Systematic Biology. 48: 107–118. doi:10.1080/106351599260472. PMID 12078635.













Popular posts from this blog

Xamarin.iOS Cant Deploy on Iphone

Glorious Revolution

Dulmage-Mendelsohn matrix decomposition in Python