How to extrapolate one curve from others?
I have following plot where you can see 5 lines for different values of paramater p
(3%, 5%, 7%, 9%, 11%)
. And I also have a linear approximation for every line as you can see.
I can't quite wrap my head around on how to predict a graph for different values of parameter p
using interpolation and extrapolation methods.
For example, I need to predict graph for p = 1%, 6%, 15%
def linear_approximation(df, name , start=1, finish=20):
df_res = pd.DataFrame(df)
df_res['Linear'] = df[name]
linear_coeff = np.polyfit(np.arange(start, finish+1),df.loc[start:finish, name], 1)
linear_coeff = np.poly1d(linear_coeff)
df_res.loc[start:finish, 'Linear'] = linear_coeff(np.arange(start, finish+1))
return df_res
df_linear = res['data']
plt.figure(figsize=(15, 9))
for counter in ['1','2','3','4','5']:
df_linear[counter].plot(grid=True, linestyle = '--', lw = 4)
linear_approximation(df_linear,counter, 10, 80)['Linear'].plot(grid=True, color = 'Gray', linestyle = '-', lw = 4)
plt.legend(loc='center left',bbox_to_anchor=(1, 0.5), fontsize = '17')
python interpolation extrapolation
add a comment |
I have following plot where you can see 5 lines for different values of paramater p
(3%, 5%, 7%, 9%, 11%)
. And I also have a linear approximation for every line as you can see.
I can't quite wrap my head around on how to predict a graph for different values of parameter p
using interpolation and extrapolation methods.
For example, I need to predict graph for p = 1%, 6%, 15%
def linear_approximation(df, name , start=1, finish=20):
df_res = pd.DataFrame(df)
df_res['Linear'] = df[name]
linear_coeff = np.polyfit(np.arange(start, finish+1),df.loc[start:finish, name], 1)
linear_coeff = np.poly1d(linear_coeff)
df_res.loc[start:finish, 'Linear'] = linear_coeff(np.arange(start, finish+1))
return df_res
df_linear = res['data']
plt.figure(figsize=(15, 9))
for counter in ['1','2','3','4','5']:
df_linear[counter].plot(grid=True, linestyle = '--', lw = 4)
linear_approximation(df_linear,counter, 10, 80)['Linear'].plot(grid=True, color = 'Gray', linestyle = '-', lw = 4)
plt.legend(loc='center left',bbox_to_anchor=(1, 0.5), fontsize = '17')
python interpolation extrapolation
add a comment |
I have following plot where you can see 5 lines for different values of paramater p
(3%, 5%, 7%, 9%, 11%)
. And I also have a linear approximation for every line as you can see.
I can't quite wrap my head around on how to predict a graph for different values of parameter p
using interpolation and extrapolation methods.
For example, I need to predict graph for p = 1%, 6%, 15%
def linear_approximation(df, name , start=1, finish=20):
df_res = pd.DataFrame(df)
df_res['Linear'] = df[name]
linear_coeff = np.polyfit(np.arange(start, finish+1),df.loc[start:finish, name], 1)
linear_coeff = np.poly1d(linear_coeff)
df_res.loc[start:finish, 'Linear'] = linear_coeff(np.arange(start, finish+1))
return df_res
df_linear = res['data']
plt.figure(figsize=(15, 9))
for counter in ['1','2','3','4','5']:
df_linear[counter].plot(grid=True, linestyle = '--', lw = 4)
linear_approximation(df_linear,counter, 10, 80)['Linear'].plot(grid=True, color = 'Gray', linestyle = '-', lw = 4)
plt.legend(loc='center left',bbox_to_anchor=(1, 0.5), fontsize = '17')
python interpolation extrapolation
I have following plot where you can see 5 lines for different values of paramater p
(3%, 5%, 7%, 9%, 11%)
. And I also have a linear approximation for every line as you can see.
I can't quite wrap my head around on how to predict a graph for different values of parameter p
using interpolation and extrapolation methods.
For example, I need to predict graph for p = 1%, 6%, 15%
def linear_approximation(df, name , start=1, finish=20):
df_res = pd.DataFrame(df)
df_res['Linear'] = df[name]
linear_coeff = np.polyfit(np.arange(start, finish+1),df.loc[start:finish, name], 1)
linear_coeff = np.poly1d(linear_coeff)
df_res.loc[start:finish, 'Linear'] = linear_coeff(np.arange(start, finish+1))
return df_res
df_linear = res['data']
plt.figure(figsize=(15, 9))
for counter in ['1','2','3','4','5']:
df_linear[counter].plot(grid=True, linestyle = '--', lw = 4)
linear_approximation(df_linear,counter, 10, 80)['Linear'].plot(grid=True, color = 'Gray', linestyle = '-', lw = 4)
plt.legend(loc='center left',bbox_to_anchor=(1, 0.5), fontsize = '17')
python interpolation extrapolation
python interpolation extrapolation
asked Nov 15 '18 at 8:59
Lust_For_LoveLust_For_Love
1501110
1501110
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53315678%2fhow-to-extrapolate-one-curve-from-others%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53315678%2fhow-to-extrapolate-one-curve-from-others%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown