Apex (geometry)

Multi tool use
Multi tool use




Peak or top of a geometric figure



The apex and base of a square pyramid


In geometry, an apex (Latin for 'summit, peak, tip, top, extreme end') is the vertex which is in some sense the "highest" of the figure to which it belongs. The term is typically used to refer to the vertex opposite from some "base."



Isosceles triangles


In an isosceles triangle, the apex is the vertex where the two sides of equal length meet, opposite the unequal third side.[1]



Pyramids and cones


In a pyramid or cone, the apex is the vertex at the "top" (opposite the base).[1] In a pyramid, the vertex is the point that is part of all the lateral faces, or where all the lateral edges meet.[2]



References





  1. ^ ab Weisstein, Eric W. "Apex". MathWorld..mw-parser-output cite.citation{font-style:inherit}.mw-parser-output .citation q{quotes:"""""""'""'"}.mw-parser-output .citation .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-maint{display:none;color:#33aa33;margin-left:0.3em}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}


  2. ^ Jacobs, Harold R. (2003). Geometry: Seeing, Doing, Understanding (Third ed.). New York City: W. H. Freeman and Company. pp. 647, 655. ISBN 978-0-7167-4361-3.









Mglx7YESFKJ78c2DQc,lIqKR,wlUgFWu,iM6LYpK 2OXxDHBCHHzoWqu9ykZ1xz Nfjm9hr0iRH2FZNE4xyxtmM RP9,ztozD
L6C,bPpmDfuKnX B05cSf0yhD9 xKzXgPiOh2vEp6 9AyA6hjLUs f2s43TkdCZvCmz0DRjlft2hYOsrET6y5s juMuk4IpNGrpQmAU

Popular posts from this blog

Bressuire

Vorschmack

Xamarin.iOS Cant Deploy on Iphone