Gamma matrices




In mathematical physics, the gamma matrices, 0,γ1,γ2,γ3}{displaystyle {gamma ^{0},gamma ^{1},gamma ^{2},gamma ^{3}}}{gamma ^{0},gamma ^{1},gamma ^{2},gamma ^{3}}, also known as the Dirac matrices, are a set of conventional matrices with specific anticommutation relations that ensure they generate a matrix representation of the Clifford algebra C1,3(R). It is also possible to define higher-dimensional gamma matrices. When interpreted as the matrices of the action of a set of orthogonal basis vectors for contravariant vectors in Minkowski space, the column vectors on which the matrices act become a space of spinors, on which the Clifford algebra of spacetime acts. This in turn makes it possible to represent infinitesimal spatial rotations and Lorentz boosts. Spinors facilitate spacetime computations in general, and in particular are fundamental to the Dirac equation for relativistic spin-½ particles.


In Dirac representation, the four contravariant gamma matrices are


γ0=(1000010000−10000−1),γ1=(000100100−100−1000),γ2=(000−i00i00i00−i000),γ3=(0010000−1−10000100).{displaystyle {begin{aligned}gamma ^{0}&={begin{pmatrix}1&0&0&0\0&1&0&0\0&0&-1&0\0&0&0&-1end{pmatrix}},&gamma ^{1}&={begin{pmatrix}0&0&0&1\0&0&1&0\0&-1&0&0\-1&0&0&0end{pmatrix}},\gamma ^{2}&={begin{pmatrix}0&0&0&-i\0&0&i&0\0&i&0&0\-i&0&0&0end{pmatrix}},&gamma ^{3}&={begin{pmatrix}0&0&1&0\0&0&0&-1\-1&0&0&0\0&1&0&0end{pmatrix}}.end{aligned}}}{displaystyle {begin{aligned}gamma ^{0}&={begin{pmatrix}1&0&0&0\0&1&0&0\0&0&-1&0\0&0&0&-1end{pmatrix}},&gamma ^{1}&={begin{pmatrix}0&0&0&1\0&0&1&0\0&-1&0&0\-1&0&0&0end{pmatrix}},\gamma ^{2}&={begin{pmatrix}0&0&0&-i\0&0&i&0\0&i&0&0\-i&0&0&0end{pmatrix}},&gamma ^{3}&={begin{pmatrix}0&0&1&0\0&0&0&-1\-1&0&0&0\0&1&0&0end{pmatrix}}.end{aligned}}}

γ0{displaystyle gamma ^{0}}gamma ^{0} is the time-like, hermitian matrix. The other three are space-like, antihermitian matrices. More compactly, γ0=σ3⊗I{displaystyle gamma ^{0}=sigma ^{3}otimes I}{displaystyle gamma ^{0}=sigma ^{3}otimes I}, and γi=iσ2⊗σi{displaystyle gamma ^{i}=isigma ^{2}otimes sigma ^{i}}{displaystyle gamma ^{i}=isigma ^{2}otimes sigma ^{i}}.


Analogous sets of gamma matrices can be defined in any dimension and for any signature of the metric. For example, the Pauli matrices are a set of "gamma" matrices in dimension 3 with metric of Euclidean signature (3, 0). In 5 spacetime dimensions, the 4 gammas above together with the fifth gamma-matrix to be presented below generate the Clifford algebra.




Contents






  • 1 Mathematical structure


  • 2 Physical structure


  • 3 Expressing the Dirac equation


  • 4 The fifth gamma matrix, γ5


  • 5 Identities


    • 5.1 Miscellaneous identities


    • 5.2 Trace identities


    • 5.3 Normalization


    • 5.4 Feynman slash notation used in Quantum field theory




  • 6 Other representations


    • 6.1 Dirac basis


    • 6.2 Weyl (chiral) basis


    • 6.3 Majorana basis


    • 6.4 C1,3(C) and C1,3(R)




  • 7 Euclidean Dirac matrices


    • 7.1 Chiral representation


    • 7.2 Non-relativistic representation




  • 8 See also


  • 9 References


  • 10 External links





Mathematical structure


The defining property for the gamma matrices to generate a Clifford algebra is the anticommutation relation


μν}=γμγννγμ=2ημνI4,{displaystyle {gamma ^{mu },gamma ^{nu }}=gamma ^{mu }gamma ^{nu }+gamma ^{nu }gamma ^{mu }=2eta ^{mu nu }I_{4},}{displaystyle {gamma ^{mu },gamma ^{nu }}=gamma ^{mu }gamma ^{nu }+gamma ^{nu }gamma ^{mu }=2eta ^{mu nu }I_{4},}

where {,}{displaystyle {,}}{,} is the anticommutator, ημν{displaystyle eta ^{mu nu }}eta ^{mu nu } is the Minkowski metric with signature (+ − − −), and I4{displaystyle I_{4}}I_{4} is the 4 × 4 identity matrix.


This defining property is more fundamental than the numerical values used in the specific representation of the gamma matrices. Covariant gamma matrices are defined by


γμμνγν={γ0,−γ1,−γ2,−γ3},{displaystyle gamma _{mu }=eta _{mu nu }gamma ^{nu }=left{gamma ^{0},-gamma ^{1},-gamma ^{2},-gamma ^{3}right},}{displaystyle gamma _{mu }=eta _{mu nu }gamma ^{nu }=left{gamma ^{0},-gamma ^{1},-gamma ^{2},-gamma ^{3}right},}

and Einstein notation is assumed.


Note that the other sign convention for the metric, (− + + +) necessitates either a change in the defining equation:


μν}=−μνI4{displaystyle {gamma ^{mu },gamma ^{nu }}=-2eta ^{mu nu }I_{4}}{displaystyle {gamma ^{mu },gamma ^{nu }}=-2eta ^{mu nu }I_{4}}

or a multiplication of all gamma matrices by i{displaystyle i}i, which of course changes their hermiticity properties detailed below. Under the alternative sign convention for the metric the covariant gamma matrices are then defined by


γμμνγν={−γ0,+γ1,+γ2,+γ3}.{displaystyle gamma _{mu }=eta _{mu nu }gamma ^{nu }=left{-gamma ^{0},+gamma ^{1},+gamma ^{2},+gamma ^{3}right}.}{displaystyle gamma _{mu }=eta _{mu nu }gamma ^{nu }=left{-gamma ^{0},+gamma ^{1},+gamma ^{2},+gamma ^{3}right}.}


Physical structure


The Clifford algebra Cl1,3(R) over spacetime V can be regarded as the set of real linear operators from V to itself, End(V), or more generally, when complexified to Cl1,3(R)C, as the set of linear operators from any 4-dimensional complex vector space to itself. More simply, given a basis for V, Cl1,3(R)C is just the set of all 4 × 4 complex matrices, but endowed with a Clifford algebra structure. Spacetime is assumed to be endowed with the Minkowski metric ημν. A space of bispinors, Ux, is also assumed at every point in spacetime, endowed with the bispinor representation of the Lorentz group. The bispinor fields Ψ of the Dirac equations, evaluated at any point x in spacetime, are elements of Ux, see below. The Clifford algebra is assumed to act on Ux as well (by matrix multiplication with column vectors Ψ(x) in Ux for all x). This will be the primary view of elements of Cl1,3(R)C in this section.


For each linear transformation S of Ux, there is a transformation of End(Ux) given by SES−1 for E in Cl1,3(R)C ≈ End(Ux). If S belongs to a representation of the Lorentz group, then the induced action ESES−1 will also belong to a representation of the Lorentz group, see Representation theory of the Lorentz group.


If S(Λ) is the bispinor representation acting on Ux of an arbitrary Lorentz transformation Λ in the standard (4-vector) representation acting on V, then there is a corresponding operator on End(Ux) = Cl1,3(R)C given by


γμS(ΛμS(Λ)−1=(Λ1)μνγν:=Λνμγν,{displaystyle gamma ^{mu }mapsto S(Lambda )gamma ^{mu }S(Lambda )^{-1}={(Lambda ^{-1})^{mu }}_{nu }gamma ^{nu }:={Lambda _{nu }}^{mu }gamma ^{nu },}{displaystyle gamma ^{mu }mapsto S(Lambda )gamma ^{mu }S(Lambda )^{-1}={(Lambda ^{-1})^{mu }}_{nu }gamma ^{nu }:={Lambda _{nu }}^{mu }gamma ^{nu },}

showing that the γμ can be viewed as a basis of a representation space of the 4-vector representation of the Lorentz group sitting inside the Clifford algebra. This means that quantities of the form


a/:=aμγμ{displaystyle a!!!/:=a_{mu }gamma ^{mu }}{displaystyle a!!!/:=a_{mu }gamma ^{mu }}

should be treated as 4-vectors in manipulations. It also means that indices can be raised and lowered on the γ using the metric ημν as with any 4-vector. The notation is called the Feynman slash notation. The slash operation maps the basis eμ of V, or any 4-dimensional vector space, to basis vectors γμ. The transformation rule for slashed quantities is simply


a/μΛμνa/ν.{displaystyle {a!!!/}^{mu }mapsto {Lambda ^{mu }}_{nu }{a!!!/}^{nu }.}{displaystyle {a!!!/}^{mu }mapsto {Lambda ^{mu }}_{nu }{a!!!/}^{nu }.}

One should note that this is different from the transformation rule for the γμ, which are now treated as (fixed) basis vectors. The designation of the 4-tuple (γμ) = (γ0, γ1, γ2, γ3) as a 4-vector sometimes found in the literature is thus a slight misnomer. The latter transformation corresponds to an active transformation of the components of a slashed quantity in terms of the basis γμ, and the former to a passive transformation of the basis γμ itself.


The elements σμν = γμγνγνγμ form a representation of the Lie algebra of the Lorentz group. This is a spin representation. When these matrices, and linear combinations of them, are exponentiated, they are bispinor representations of the Lorentz group, e.g., the S(Λ) of above are of this form. The 6-dimensional space the σμν span is the representation space of a tensor representation of the Lorentz group. For the higher order elements of the Clifford algebra in general and their transformation rules, see the article Dirac algebra. But it is noted here that the Clifford algebra has no subspace being the representation space of a spin representation of the Lorentz group in the context used here.



Expressing the Dirac equation


In natural units, the Dirac equation may be written as


(iγμμm)ψ=0{displaystyle (igamma ^{mu }partial _{mu }-m)psi =0}(igamma ^{mu }partial _{mu }-m)psi =0

where ψ{displaystyle psi }psi is a Dirac spinor.


Switching to Feynman notation, the Dirac equation is


(i∂/−m)ψ=0.{displaystyle (i{partial !!!/}-m)psi =0.}{displaystyle (i{partial !!!/}-m)psi =0.}


The fifth gamma matrix, γ5


It is useful to define the product of the four gamma matrices as follows:



γ5:=iγ3=(0010000110000100){displaystyle gamma ^{5}:=igamma ^{0}gamma ^{1}gamma ^{2}gamma ^{3}={begin{pmatrix}0&0&1&0\0&0&0&1\1&0&0&0\0&1&0&0end{pmatrix}}}{displaystyle gamma ^{5}:=igamma ^{0}gamma ^{1}gamma ^{2}gamma ^{3}={begin{pmatrix}0&0&1&0\0&0&0&1\1&0&0&0\0&1&0&0end{pmatrix}}} (in the Dirac basis).

Although γ5{displaystyle gamma ^{5}}gamma ^{5} uses the letter gamma, it is not one of the gamma matrices of C1,3(R). The number 5 is a relic of old notation in which γ0{displaystyle gamma ^{0}}gamma ^{0} was called "γ4{displaystyle gamma ^{4}}gamma ^{4}".


γ5{displaystyle gamma ^{5}}gamma ^{5} has also an alternative form:


γ5=i4!εμναβγμγνγαγβ{displaystyle gamma ^{5}={frac {i}{4!}}varepsilon _{mu nu alpha beta }gamma ^{mu }gamma ^{nu }gamma ^{alpha }gamma ^{beta }}gamma ^{5}={frac {i}{4!}}varepsilon _{mu nu alpha beta }gamma ^{mu }gamma ^{nu }gamma ^{alpha }gamma ^{beta }


This matrix is useful in discussions of quantum mechanical chirality. For example, a Dirac field can be projected onto its left-handed and right-handed components by:



ψL=1−γ52ψR=1+γ52ψ{displaystyle psi _{L}={frac {1-gamma ^{5}}{2}}psi ,qquad psi _{R}={frac {1+gamma ^{5}}{2}}psi }{displaystyle psi _{L}={frac {1-gamma ^{5}}{2}}psi ,qquad psi _{R}={frac {1+gamma ^{5}}{2}}psi }.

Some properties are:



  • It is hermitian:
    5)†5.{displaystyle (gamma ^{5})^{dagger }=gamma ^{5}.}{displaystyle (gamma ^{5})^{dagger }=gamma ^{5}.}


  • Its eigenvalues are ±1, because:
    5)2=I4.{displaystyle (gamma ^{5})^{2}=I_{4}.}{displaystyle (gamma ^{5})^{2}=I_{4}.}


  • It anticommutes with the four gamma matrices:
    5,γμ}=γμμγ5=0.{displaystyle left{gamma ^{5},gamma ^{mu }right}=gamma ^{5}gamma ^{mu }+gamma ^{mu }gamma ^{5}=0.}{displaystyle left{gamma ^{5},gamma ^{mu }right}=gamma ^{5}gamma ^{mu }+gamma ^{mu }gamma ^{5}=0.}



The set {γ0, γ1, γ2, γ3, 5} therefore, by the last two properties (keeping in mind that i2 = −1) and those of the old gammas, forms the basis of the Clifford algebra in 5 spacetime dimensions for the metric signature (1,4).[1] In metric signature (4,1), the set {γ0, γ1, γ2, γ3, γ5} is used, where the γμ are the appropriate ones for the (3,1) signature.[2] This pattern is repeated for spacetime dimension 2n even and the next odd dimension 2n + 1 for all n ≥ 1.[3] For more detail, see Higher-dimensional gamma matrices.



Identities


The following identities follow from the fundamental anticommutation relation, so they hold in any basis (although the last one depends on the sign choice for γ5{displaystyle gamma ^{5}}gamma ^{5}).



Miscellaneous identities




  1. γμγμ=4I4{displaystyle gamma ^{mu }gamma _{mu }=4I_{4}}{displaystyle gamma ^{mu }gamma _{mu }=4I_{4}}



  2. γμγνγμ=−ν{displaystyle gamma ^{mu }gamma ^{nu }gamma _{mu }=-2gamma ^{nu }}{displaystyle gamma ^{mu }gamma ^{nu }gamma _{mu }=-2gamma ^{nu }}



  3. γμγνγργμ=4ηνρI4{displaystyle gamma ^{mu }gamma ^{nu }gamma ^{rho }gamma _{mu }=4eta ^{nu rho }I_{4}}{displaystyle gamma ^{mu }gamma ^{nu }gamma ^{rho }gamma _{mu }=4eta ^{nu rho }I_{4}}



  4. γμγνγργσγμ=−σγργν{displaystyle gamma ^{mu }gamma ^{nu }gamma ^{rho }gamma ^{sigma }gamma _{mu }=-2gamma ^{sigma }gamma ^{rho }gamma ^{nu }}{displaystyle gamma ^{mu }gamma ^{nu }gamma ^{rho }gamma ^{sigma }gamma _{mu }=-2gamma ^{sigma }gamma ^{rho }gamma ^{nu }}



  5. γμγνγρμνγρνργμημργνσμνργσγ5{displaystyle gamma ^{mu }gamma ^{nu }gamma ^{rho }=eta ^{mu nu }gamma ^{rho }+eta ^{nu rho }gamma ^{mu }-eta ^{mu rho }gamma ^{nu }-iepsilon ^{sigma mu nu rho }gamma _{sigma }gamma ^{5}}{displaystyle gamma ^{mu }gamma ^{nu }gamma ^{rho }=eta ^{mu nu }gamma ^{rho }+eta ^{nu rho }gamma ^{mu }-eta ^{mu rho }gamma ^{nu }-iepsilon ^{sigma mu nu rho }gamma _{sigma }gamma ^{5}}




Trace identities


The gamma matrices obey the following trace identities:



  1. tr⁡μ)=0{displaystyle operatorname {tr} left(gamma ^{mu }right)=0}{displaystyle operatorname {tr} left(gamma ^{mu }right)=0}

  2. Trace of any product of an odd number of γμ{displaystyle gamma ^{mu }}gamma ^{mu } is zero

  3. Trace of γ5{displaystyle gamma ^{5}}gamma ^{5} times a product of an odd number of γμ{displaystyle gamma ^{mu }}gamma ^{mu } is still zero

  4. tr⁡μγν)=4ημν{displaystyle operatorname {tr} left(gamma ^{mu }gamma ^{nu }right)=4eta ^{mu nu }}{displaystyle operatorname {tr} left(gamma ^{mu }gamma ^{nu }right)=4eta ^{mu nu }}

  5. tr⁡μγνγργσ)=4(ημνηρσημρηνσμσηνρ){displaystyle operatorname {tr} left(gamma ^{mu }gamma ^{nu }gamma ^{rho }gamma ^{sigma }right)=4left(eta ^{mu nu }eta ^{rho sigma }-eta ^{mu rho }eta ^{nu sigma }+eta ^{mu sigma }eta ^{nu rho }right)}{displaystyle operatorname {tr} left(gamma ^{mu }gamma ^{nu }gamma ^{rho }gamma ^{sigma }right)=4left(eta ^{mu nu }eta ^{rho sigma }-eta ^{mu rho }eta ^{nu sigma }+eta ^{mu sigma }eta ^{nu rho }right)}

  6. tr⁡5)=tr⁡μγνγ5)=0{displaystyle operatorname {tr} left(gamma ^{5}right)=operatorname {tr} left(gamma ^{mu }gamma ^{nu }gamma ^{5}right)=0}{displaystyle operatorname {tr} left(gamma ^{5}right)=operatorname {tr} left(gamma ^{mu }gamma ^{nu }gamma ^{5}right)=0}

  7. tr⁡μγνγργσγ5)=−4iϵμνρσ{displaystyle operatorname {tr} left(gamma ^{mu }gamma ^{nu }gamma ^{rho }gamma ^{sigma }gamma ^{5}right)=-4iepsilon ^{mu nu rho sigma }}{displaystyle operatorname {tr} left(gamma ^{mu }gamma ^{nu }gamma ^{rho }gamma ^{sigma }gamma ^{5}right)=-4iepsilon ^{mu nu rho sigma }}

  8. tr⁡μ1…γμn)=tr⁡μn…γμ1){displaystyle operatorname {tr} left(gamma ^{mu _{1}}dots gamma ^{mu _{n}}right)=operatorname {tr} left(gamma ^{mu _{n}}dots gamma ^{mu _{1}}right)}{displaystyle operatorname {tr} left(gamma ^{mu _{1}}dots gamma ^{mu _{n}}right)=operatorname {tr} left(gamma ^{mu _{n}}dots gamma ^{mu _{1}}right)}


Proving the above involves the use of three main properties of the trace operator:



  • tr(A + B) = tr(A) + tr(B)

  • tr(rA) = r tr(A)

  • tr(ABC) = tr(CAB) = tr(BCA)











Normalization


The gamma matrices can be chosen with extra hermiticity conditions which are restricted by the above anticommutation relations however. We can impose



0)†0{displaystyle left(gamma ^{0}right)^{dagger }=gamma ^{0}}{displaystyle left(gamma ^{0}right)^{dagger }=gamma ^{0}}, compatible with 0)2=I4{displaystyle left(gamma ^{0}right)^{2}=I_{4}}{displaystyle left(gamma ^{0}right)^{2}=I_{4}}

and for the other gamma matrices (for k = 1, 2, 3)



k)†=−γk{displaystyle left(gamma ^{k}right)^{dagger }=-gamma ^{k}}{displaystyle left(gamma ^{k}right)^{dagger }=-gamma ^{k}}, compatible with k)2=−I4.{displaystyle left(gamma ^{k}right)^{2}=-I_{4}.}{displaystyle left(gamma ^{k}right)^{2}=-I_{4}.}

One checks immediately that these hermiticity relations hold for the Dirac representation.


The above conditions can be combined in the relation


μ)†μγ0.{displaystyle left(gamma ^{mu }right)^{dagger }=gamma ^{0}gamma ^{mu }gamma ^{0}.}{displaystyle left(gamma ^{mu }right)^{dagger }=gamma ^{0}gamma ^{mu }gamma ^{0}.}

The hermiticity conditions are not invariant under the action γμS(ΛμS(Λ)−1{displaystyle gamma ^{mu }to S(Lambda )gamma ^{mu }{S(Lambda )}^{-1}}gamma ^{mu }to S(Lambda )gamma ^{mu }{S(Lambda )}^{-1} of a Lorentz transformation Λ{displaystyle Lambda }Lambda because S(Λ){displaystyle S(Lambda )}S(Lambda ) is not necessarily a unitary transformation due to the non-compactness of the Lorentz group.



Feynman slash notation used in Quantum field theory


The Feynman slash notation is defined by


a/:=γμ{displaystyle {a!!!/}:=gamma ^{mu }a_{mu }}{displaystyle {a!!!/}:=gamma ^{mu }a_{mu }}

for any 4-vector a.


Here are some similar identities to the ones above, but involving slash notation:



  • a/b/=a⋅b−iaμσμν{displaystyle {a!!!/}{b!!!/}=acdot b-ia_{mu }sigma ^{mu nu }b_{nu }}{displaystyle {a!!!/}{b!!!/}=acdot b-ia_{mu }sigma ^{mu nu }b_{nu }}

  • a/a/=aμγμγν=12aμμγννγμ)=ημν=a2{displaystyle {a!!!/}{a!!!/}=a^{mu }a^{nu }gamma _{mu }gamma _{nu }={frac {1}{2}}a^{mu }a^{nu }left(gamma _{mu }gamma _{nu }+gamma _{nu }gamma _{mu }right)=eta _{mu nu }a^{mu }a^{nu }=a^{2}}{displaystyle {a!!!/}{a!!!/}=a^{mu }a^{nu }gamma _{mu }gamma _{nu }={frac {1}{2}}a^{mu }a^{nu }left(gamma _{mu }gamma _{nu }+gamma _{nu }gamma _{mu }right)=eta _{mu nu }a^{mu }a^{nu }=a^{2}}

  • tr⁡(a/b/)=4(a⋅b){displaystyle operatorname {tr} left({a!!!/}{b!!!/}right)=4(acdot b)}{displaystyle operatorname {tr} left({a!!!/}{b!!!/}right)=4(acdot b)}

  • tr⁡(a/b/c/d/)=4[(a⋅b)(c⋅d)−(a⋅c)(b⋅d)+(a⋅d)(b⋅c)]{displaystyle operatorname {tr} left({a!!!/}{b!!!/}{c!!!/}{d!!!/}right)=4left[(acdot b)(ccdot d)-(acdot c)(bcdot d)+(acdot d)(bcdot c)right]}{displaystyle operatorname {tr} left({a!!!/}{b!!!/}{c!!!/}{d!!!/}right)=4left[(acdot b)(ccdot d)-(acdot c)(bcdot d)+(acdot d)(bcdot c)right]}

  • tr⁡5a/b/)=0{displaystyle operatorname {tr} left(gamma _{5}{a!!!/}{b!!!/}right)=0}{displaystyle operatorname {tr} left(gamma _{5}{a!!!/}{b!!!/}right)=0}

  • tr⁡5a/b/c/d/)=−4iϵμνρσ{displaystyle operatorname {tr} left(gamma _{5}{a!!!/}{b!!!/}{c!!!/}{d!!!/}right)=-4iepsilon _{mu nu rho sigma }a^{mu }b^{nu }c^{rho }d^{sigma }}{displaystyle operatorname {tr} left(gamma _{5}{a!!!/}{b!!!/}{c!!!/}{d!!!/}right)=-4iepsilon _{mu nu rho sigma }a^{mu }b^{nu }c^{rho }d^{sigma }}

  • γμa/γμ=−2a/{displaystyle gamma _{mu }{a!!!/}gamma ^{mu }=-2{a!!!/}}{displaystyle gamma _{mu }{a!!!/}gamma ^{mu }=-2{a!!!/}}

  • γμa/b/γμ=4a⋅b{displaystyle gamma _{mu }{a!!!/}{b!!!/}gamma ^{mu }=4acdot b}{displaystyle gamma _{mu }{a!!!/}{b!!!/}gamma ^{mu }=4acdot b}


  • γμa/b/c/γμ=−2c/b/a/{displaystyle gamma _{mu }{a!!!/}{b!!!/}{c!!!/}gamma ^{mu }=-2{c!!!/}{b!!!/}{a!!!/}}{displaystyle gamma _{mu }{a!!!/}{b!!!/}{c!!!/}gamma ^{mu }=-2{c!!!/}{b!!!/}{a!!!/}}
    where ϵμνρσ{displaystyle epsilon _{mu nu rho sigma }}{displaystyle epsilon _{mu nu rho sigma }} is the Levi-Civita symbol and σμν=i2[γμν].{displaystyle sigma ^{mu nu }={frac {i}{2}}left[gamma ^{mu },gamma ^{nu }right].}{displaystyle sigma ^{mu nu }={frac {i}{2}}left[gamma ^{mu },gamma ^{nu }right].} Actually traces of products of odd number of γ{displaystyle gamma }gamma is zero and thus



  • tr⁡(a/)=tr⁡(a/b/c/)=tr⁡(a/b/c/d/e/)=0{displaystyle operatorname {tr} left({a!!!/}right)=operatorname {tr} left({a!!!/}{b!!!/}{c!!!/}right)=operatorname {tr} left({a!!!/}{b!!!/}{c!!!/}{d!!!/}{e!!!/}right)=0}{displaystyle operatorname {tr} left({a!!!/}right)=operatorname {tr} left({a!!!/}{b!!!/}{c!!!/}right)=operatorname {tr} left({a!!!/}{b!!!/}{c!!!/}{d!!!/}{e!!!/}right)=0}[4]



Other representations


The matrices are also sometimes written using the 2×2 identity matrix, I2{displaystyle I_{2}}I_{2}, and


γk=(0σk−σk0){displaystyle gamma ^{k}={begin{pmatrix}0&sigma ^{k}\-sigma ^{k}&0end{pmatrix}}}gamma ^{k}={begin{pmatrix}0&sigma ^{k}\-sigma ^{k}&0end{pmatrix}}

where k runs from 1 to 3 and the σk are Pauli matrices.



Dirac basis


The gamma matrices we have written so far are appropriate for acting on Dirac spinors written in the Dirac basis; in fact, the Dirac basis is defined by these matrices. To summarize, in the Dirac basis:


γ0=(I200−I2),γk=(0σk−σk0),γ5=(0I2I20).{displaystyle gamma ^{0}={begin{pmatrix}I_{2}&0\0&-I_{2}end{pmatrix}},quad gamma ^{k}={begin{pmatrix}0&sigma ^{k}\-sigma ^{k}&0end{pmatrix}},quad gamma ^{5}={begin{pmatrix}0&I_{2}\I_{2}&0end{pmatrix}}.}gamma ^{0}={begin{pmatrix}I_{2}&0\0&-I_{2}end{pmatrix}},quad gamma ^{k}={begin{pmatrix}0&sigma ^{k}\-sigma ^{k}&0end{pmatrix}},quad gamma ^{5}={begin{pmatrix}0&I_{2}\I_{2}&0end{pmatrix}}.


Weyl (chiral) basis


Another common choice is the Weyl or chiral basis,[5] in which γk{displaystyle gamma ^{k}}gamma ^{k} remains the same but γ0{displaystyle gamma ^{0}}gamma ^{0} is different, and so γ5{displaystyle gamma ^{5}}gamma ^{5} is also different, and diagonal,


γ0=(0I2I20),γk=(0σk−σk0),γ5=(−I200I2),{displaystyle gamma ^{0}={begin{pmatrix}0&I_{2}\I_{2}&0end{pmatrix}},quad gamma ^{k}={begin{pmatrix}0&sigma ^{k}\-sigma ^{k}&0end{pmatrix}},quad gamma ^{5}={begin{pmatrix}-I_{2}&0\0&I_{2}end{pmatrix}},}gamma ^{0}={begin{pmatrix}0&I_{2}\I_{2}&0end{pmatrix}},quad gamma ^{k}={begin{pmatrix}0&sigma ^{k}\-sigma ^{k}&0end{pmatrix}},quad gamma ^{5}={begin{pmatrix}-I_{2}&0\0&I_{2}end{pmatrix}},

or in more compact notation:


γμ=(0σμσ¯μ0),σμ(1,σi),σ¯μ(1,−σi).{displaystyle gamma ^{mu }={begin{pmatrix}0&sigma ^{mu }\{bar {sigma }}^{mu }&0end{pmatrix}},quad sigma ^{mu }equiv (1,sigma ^{i}),quad {bar {sigma }}^{mu }equiv (1,-sigma ^{i}).}{displaystyle gamma ^{mu }={begin{pmatrix}0&sigma ^{mu }\{bar {sigma }}^{mu }&0end{pmatrix}},quad sigma ^{mu }equiv (1,sigma ^{i}),quad {bar {sigma }}^{mu }equiv (1,-sigma ^{i}).}

The Weyl basis has the advantage that its chiral projections take a simple form,


ψL=12(1−γ5)ψ=(I2000)ψR=12(1+γ5)ψ=(000I2)ψ.{displaystyle psi _{L}={frac {1}{2}}left(1-gamma ^{5}right)psi ={begin{pmatrix}I_{2}&0\0&0end{pmatrix}}psi ,quad psi _{R}={frac {1}{2}}left(1+gamma ^{5}right)psi ={begin{pmatrix}0&0\0&I_{2}end{pmatrix}}psi .}{displaystyle psi _{L}={frac {1}{2}}left(1-gamma ^{5}right)psi ={begin{pmatrix}I_{2}&0\0&0end{pmatrix}}psi ,quad psi _{R}={frac {1}{2}}left(1+gamma ^{5}right)psi ={begin{pmatrix}0&0\0&I_{2}end{pmatrix}}psi .}

The idempotence of the chiral projections is manifest.
By slightly abusing the notation and reusing the symbols ψL/R{displaystyle psi _{L/R}}psi _{L/R} we can then identify


ψ=(ψR),{displaystyle psi ={begin{pmatrix}psi _{L}\psi _{R}end{pmatrix}},}{displaystyle psi ={begin{pmatrix}psi _{L}\psi _{R}end{pmatrix}},}

where now ψL{displaystyle psi _{L}}psi _{L} and ψR{displaystyle psi _{R}}psi _{R} are left-handed and right-handed two-component Weyl spinors.


Another possible choice[6] of the Weyl basis has


γ0=(0−I2−I20),γk=(0σk−σk0),γ5=(I200−I2).{displaystyle gamma ^{0}={begin{pmatrix}0&-I_{2}\-I_{2}&0end{pmatrix}},quad gamma ^{k}={begin{pmatrix}0&sigma ^{k}\-sigma ^{k}&0end{pmatrix}},quad gamma ^{5}={begin{pmatrix}I_{2}&0\0&-I_{2}end{pmatrix}}.}gamma ^{0}={begin{pmatrix}0&-I_{2}\-I_{2}&0end{pmatrix}},quad gamma ^{k}={begin{pmatrix}0&sigma ^{k}\-sigma ^{k}&0end{pmatrix}},quad gamma ^{5}={begin{pmatrix}I_{2}&0\0&-I_{2}end{pmatrix}}.

The chiral projections take a slightly different form from the other Weyl choice,


ψR=(I2000)ψL=(000I2)ψ.{displaystyle psi _{R}={begin{pmatrix}I_{2}&0\0&0end{pmatrix}}psi ,quad psi _{L}={begin{pmatrix}0&0\0&I_{2}end{pmatrix}}psi .}{displaystyle psi _{R}={begin{pmatrix}I_{2}&0\0&0end{pmatrix}}psi ,quad psi _{L}={begin{pmatrix}0&0\0&I_{2}end{pmatrix}}psi .}

In other words,


ψ=(ψL),{displaystyle psi ={begin{pmatrix}psi _{R}\psi _{L}end{pmatrix}},}{displaystyle psi ={begin{pmatrix}psi _{R}\psi _{L}end{pmatrix}},}

where ψL{displaystyle psi _{L}}psi _{L} and ψR{displaystyle psi _{R}}psi _{R} are the left-handed and right-handed two-component Weyl spinors, as before.



Majorana basis


There is also the Majorana basis, in which all of the Dirac matrices are imaginary, and the spinors and Dirac equation are real. Regarding the Pauli matrices, the basis can be written as


γ0=(0σ20),γ1=(iσ300iσ3),γ2=(0−σ20),γ3=(−100−1),γ5=(σ200−σ2),C=(0−2−20).{displaystyle {begin{aligned}gamma ^{0}&={begin{pmatrix}0&sigma ^{2}\sigma ^{2}&0end{pmatrix}},&gamma ^{1}&={begin{pmatrix}isigma ^{3}&0\0&isigma ^{3}end{pmatrix}},&gamma ^{2}&={begin{pmatrix}0&-sigma ^{2}\sigma ^{2}&0end{pmatrix}},\gamma ^{3}&={begin{pmatrix}-isigma ^{1}&0\0&-isigma ^{1}end{pmatrix}},&gamma ^{5}&={begin{pmatrix}sigma ^{2}&0\0&-sigma ^{2}end{pmatrix}},&C&={begin{pmatrix}0&-isigma ^{2}\-isigma ^{2}&0end{pmatrix}}.end{aligned}}}{displaystyle {begin{aligned}gamma ^{0}&={begin{pmatrix}0&sigma ^{2}\sigma ^{2}&0end{pmatrix}},&gamma ^{1}&={begin{pmatrix}isigma ^{3}&0\0&isigma ^{3}end{pmatrix}},&gamma ^{2}&={begin{pmatrix}0&-sigma ^{2}\sigma ^{2}&0end{pmatrix}},\gamma ^{3}&={begin{pmatrix}-isigma ^{1}&0\0&-isigma ^{1}end{pmatrix}},&gamma ^{5}&={begin{pmatrix}sigma ^{2}&0\0&-sigma ^{2}end{pmatrix}},&C&={begin{pmatrix}0&-isigma ^{2}\-isigma ^{2}&0end{pmatrix}}.end{aligned}}}

The reason for making all gamma matrices imaginary is solely to obtain the particle physics metric (+, −, −, −) in which squared masses are positive. The Majorana representation, however, is real. One can factor out the i{displaystyle i}i to obtain a different representation with four component real spinors and real gamma matrices. The consequence of removing the i{displaystyle i}i is that the only possible metric with real gamma matrices is (−, +, +, +).



C1,3(C) and C1,3(R)


The Dirac algebra can be regarded as a complexification of the real algebra C1,3(R), called the space time algebra:


Cl1,3(C)=Cl1,3(R)⊗C{displaystyle Cl_{1,3}(mathbb {C} )=Cl_{1,3}(mathbb {R} )otimes mathbb {C} }Cl_{1,3}(mathbb {C} )=Cl_{1,3}(mathbb {R} )otimes mathbb {C}

C1,3(R) differs from C1,3(C): in C1,3(R) only real linear combinations of the gamma matrices and their products are allowed.


Two things deserve to be pointed out. As Clifford algebras, C1,3(C) and C4(C) are isomorphic, see classification of Clifford algebras. The reason is that the underlying signature of the spacetime metric loses its signature (3,1) upon passing to the complexification. However, the transformation required to bring the bilinear form to the complex canonical form is not a Lorentz transformation and hence not "permissible" (at the very least impractical) since all physics is tightly knit to the Lorentz symmetry and it is preferable to keep it manifest.


Proponents of geometric algebra strive to work with real algebras wherever that is possible. They argue that it is generally possible (and usually enlightening) to identify the presence of an imaginary unit in a physical equation. Such units arise from one of the many quantities in a real Clifford algebra that square to −1, and these have geometric significance because of the properties of the algebra and the interaction of its various subspaces. Some of these proponents also question whether it is necessary or even useful to introduce an additional imaginary unit in the context of the Dirac equation.[7]


However, in contemporary practice, the Dirac algebra rather than the space-time algebra continues to be the standard environment the spinors of the Dirac equation "live" in.



Euclidean Dirac matrices


In quantum field theory one can Wick rotate the time axis to transit from Minkowski space to Euclidean space. This is particularly useful in some renormalization procedures as well as lattice gauge theory. In Euclidean space, there are two commonly used representations of Dirac matrices:



Chiral representation


γ1,2,3=(0iσ1,2,3−1,2,30),γ4=(0I2I20){displaystyle gamma ^{1,2,3}={begin{pmatrix}0&isigma ^{1,2,3}\-isigma ^{1,2,3}&0end{pmatrix}},quad gamma ^{4}={begin{pmatrix}0&I_{2}\I_{2}&0end{pmatrix}}}{displaystyle gamma ^{1,2,3}={begin{pmatrix}0&isigma ^{1,2,3}\-isigma ^{1,2,3}&0end{pmatrix}},quad gamma ^{4}={begin{pmatrix}0&I_{2}\I_{2}&0end{pmatrix}}}

Notice that the factors of i{displaystyle i}i have been inserted in the spatial gamma matrices so that the Euclidean Clifford algebra


μν}=2δμνI4{displaystyle left{gamma ^{mu },gamma ^{nu }right}=2delta ^{mu nu }I_{4}}{displaystyle left{gamma ^{mu },gamma ^{nu }right}=2delta ^{mu nu }I_{4}}

will emerge. It is also worth noting that there are variants of this which insert instead i{displaystyle -i}-i on one of the matrices, such as in lattice QCD codes which use the chiral basis.


In Euclidean space,


γM5=i(γ3)M=1i2(γ3)E=(γ4)E=γE5.{displaystyle gamma _{M}^{5}=ileft(gamma ^{0}gamma ^{1}gamma ^{2}gamma ^{3}right)_{M}={frac {1}{i^{2}}}left(gamma ^{4}gamma ^{1}gamma ^{2}gamma ^{3}right)_{E}=left(gamma ^{1}gamma ^{2}gamma ^{3}gamma ^{4}right)_{E}=gamma _{E}^{5}.}{displaystyle gamma _{M}^{5}=ileft(gamma ^{0}gamma ^{1}gamma ^{2}gamma ^{3}right)_{M}={frac {1}{i^{2}}}left(gamma ^{4}gamma ^{1}gamma ^{2}gamma ^{3}right)_{E}=left(gamma ^{1}gamma ^{2}gamma ^{3}gamma ^{4}right)_{E}=gamma _{E}^{5}.}

Using the anti-commutator and noting that in Euclidean space μ)†μ{displaystyle left(gamma ^{mu }right)^{dagger }=gamma ^{mu }}{displaystyle left(gamma ^{mu }right)^{dagger }=gamma ^{mu }}, one shows that


5)†5{displaystyle left(gamma ^{5}right)^{dagger }=gamma ^{5}}{displaystyle left(gamma ^{5}right)^{dagger }=gamma ^{5}}

In chiral basis in Euclidean space,


γ5=(−I200I2){displaystyle gamma ^{5}={begin{pmatrix}-I_{2}&0\0&I_{2}end{pmatrix}}}{displaystyle gamma ^{5}={begin{pmatrix}-I_{2}&0\0&I_{2}end{pmatrix}}}

which is unchanged from its Minkowski version.



Non-relativistic representation


γ1,2,3=(0−1,2,3iσ1,2,30),γ4=(I200−I2),γ5=(0−I2−I20){displaystyle gamma ^{1,2,3}={begin{pmatrix}0&-isigma ^{1,2,3}\isigma ^{1,2,3}&0end{pmatrix}},quad gamma ^{4}={begin{pmatrix}I_{2}&0\0&-I_{2}end{pmatrix}},quad gamma ^{5}={begin{pmatrix}0&-I_{2}\-I_{2}&0end{pmatrix}}}{displaystyle gamma ^{1,2,3}={begin{pmatrix}0&-isigma ^{1,2,3}\isigma ^{1,2,3}&0end{pmatrix}},quad gamma ^{4}={begin{pmatrix}I_{2}&0\0&-I_{2}end{pmatrix}},quad gamma ^{5}={begin{pmatrix}0&-I_{2}\-I_{2}&0end{pmatrix}}}


See also




  • Pauli matrices

  • Gell-Mann matrices

  • Higher-dimensional gamma matrices

  • Fierz identity



References





  1. ^ The reason for the notation γ5 is because that set of matrices (ΓA) = (γμ, 5) with A = (0, 1, 2, 3, 4) satisfy the five-dimensional Clifford algebra {ΓA, ΓB} = 2ηAB. Tong 2007, p. 93.


  2. ^ Weinberg 2002 Section 5.5.


  3. ^ de Wit & Smith 1996, p. 679.


  4. ^ Lecture note from University of Texas at Austin


  5. ^ The matrices in this basis, provided below, are the similarity transforms of the Dirac basis matrices of the previous paragraph, U†γU{displaystyle U^{dagger }gamma _{D}^{mu }U}{displaystyle U^{dagger }gamma _{D}^{mu }U}, where U=12(1−γ0)=12(II−II){displaystyle U={frac {1}{sqrt {2}}}left(1-gamma ^{5}gamma ^{0}right)={frac {1}{sqrt {2}}}{begin{pmatrix}I&I\-I&Iend{pmatrix}}}{displaystyle U={frac {1}{sqrt {2}}}left(1-gamma ^{5}gamma ^{0}right)={frac {1}{sqrt {2}}}{begin{pmatrix}I&I\-I&Iend{pmatrix}}}.


  6. ^ Michio Kaku, Quantum Field Theory, .mw-parser-output cite.citation{font-style:inherit}.mw-parser-output .citation q{quotes:"""""""'""'"}.mw-parser-output .citation .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-maint{display:none;color:#33aa33;margin-left:0.3em}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}
    ISBN 0-19-509158-2, appendix A



  7. ^ See e.g. Hestenes 1996.





  • Halzen, Francis; Martin, Alan (1984). Quarks & Leptons: An Introductory Course in Modern Particle Physics. John Wiley & Sons. ISBN 0-471-88741-2.

  • A. Zee, Quantum Field Theory in a Nutshell (2003), Princeton University Press: Princeton, New Jersey.
    ISBN 0-691-01019-6. See chapter II.1.

  • M. Peskin, D. Schroeder, An Introduction to Quantum Field Theory (Westview Press, 1995)
    ISBN 0-201-50397-2 See chapter 3.2.


  • W. Pauli (1936). "Contributions mathématiques à la théorie des matrices de Dirac". Annales de l'Institut Henri Poincaré. 6: 109.


  • Weinberg, S. (2002), The Quantum Theory of Fields, 1, Cambridge University Press, ISBN 0-521-55001-7


  • Tong, David (2007). "Quantum Field Theory". David Tong at University of Cambridge. p. 93. Retrieved 2015-03-07.


  • de Wit, B.; Smith, J. (1986). Field Theory in Particle Physics. North-Holland Personal Library. 1. North-Holland. ISBN 978-0444869999.
    Appendix E


  • David Hestenes, Real Dirac Theory, in J. Keller and Z. Oziewicz (Eds.), The Theory of the Electron, UNAM, Facultad de Estudios Superiores, Cuautitlan, Mexico (1996), pp. 1–50.



External links




  • Dirac matrices on mathworld including their group properties

  • Dirac matrices as an abstract group on GroupNames


  • Hazewinkel, Michiel, ed. (2001) [1994], "Dirac matrices", Encyclopedia of Mathematics, Springer Science+Business Media B.V. / Kluwer Academic Publishers, ISBN 978-1-55608-010-4




Popular posts from this blog

Bressuire

Vorschmack

Quarantine