Probabilistic classification with Gaussian Bayes Classifier vs Logistic Regression
.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty{ height:90px;width:728px;box-sizing:border-box;
}
I have a binary classification problem where I have a few great features that have the power to predict almost 100% of the test data because the problem is relatively simple.
However, as the nature of the problem requires, I have no luxury to make mistake(let's say) so instead of giving a prediction I am not sure of, I would rather have the output as probability, set a threshold and would be able to say, "if I am less than %95 sure, I will call this "NOT SURE" and act accordingly". Saying "I don't know" rather than making a mistake is better.
So far so good.
For this purpose, I tried Gaussian Bayes Classifier(I have a cont. feature) and Logistic Regression algorithms, which provide me the probability as well as the prediction for the classification.
Coming to my Problem:
GBC has around 99% success rate while Logistic Regression has lower, around 96% success rate. So I naturally would prefer to use GBC.
However, as successful as GBC is, it is also very sure of itself. The odds I get are either 1 or very very close to 1, such as 0.9999997, which makes things tough for me, because in practice GBC does not provide me probabilities now.Logistic Regression works poor, but at least gives better and more 'sensible' odds.
As nature of my problem, the cost of misclassifying is by the power of 2 so if I misclassify 4 of the products, I lose 2^4 more (it's unit-less but gives an idea anyway).
In the end; I would like to be able to classify with a higher success than Logistic Regression, but also be able to have more probabilities so I can set a threshold and point out the ones I am not sure of.
Any suggestions?
Thanks in advance.
machine-learning classification data-science logistic-regression naivebayes
add a comment |
I have a binary classification problem where I have a few great features that have the power to predict almost 100% of the test data because the problem is relatively simple.
However, as the nature of the problem requires, I have no luxury to make mistake(let's say) so instead of giving a prediction I am not sure of, I would rather have the output as probability, set a threshold and would be able to say, "if I am less than %95 sure, I will call this "NOT SURE" and act accordingly". Saying "I don't know" rather than making a mistake is better.
So far so good.
For this purpose, I tried Gaussian Bayes Classifier(I have a cont. feature) and Logistic Regression algorithms, which provide me the probability as well as the prediction for the classification.
Coming to my Problem:
GBC has around 99% success rate while Logistic Regression has lower, around 96% success rate. So I naturally would prefer to use GBC.
However, as successful as GBC is, it is also very sure of itself. The odds I get are either 1 or very very close to 1, such as 0.9999997, which makes things tough for me, because in practice GBC does not provide me probabilities now.Logistic Regression works poor, but at least gives better and more 'sensible' odds.
As nature of my problem, the cost of misclassifying is by the power of 2 so if I misclassify 4 of the products, I lose 2^4 more (it's unit-less but gives an idea anyway).
In the end; I would like to be able to classify with a higher success than Logistic Regression, but also be able to have more probabilities so I can set a threshold and point out the ones I am not sure of.
Any suggestions?
Thanks in advance.
machine-learning classification data-science logistic-regression naivebayes
add a comment |
I have a binary classification problem where I have a few great features that have the power to predict almost 100% of the test data because the problem is relatively simple.
However, as the nature of the problem requires, I have no luxury to make mistake(let's say) so instead of giving a prediction I am not sure of, I would rather have the output as probability, set a threshold and would be able to say, "if I am less than %95 sure, I will call this "NOT SURE" and act accordingly". Saying "I don't know" rather than making a mistake is better.
So far so good.
For this purpose, I tried Gaussian Bayes Classifier(I have a cont. feature) and Logistic Regression algorithms, which provide me the probability as well as the prediction for the classification.
Coming to my Problem:
GBC has around 99% success rate while Logistic Regression has lower, around 96% success rate. So I naturally would prefer to use GBC.
However, as successful as GBC is, it is also very sure of itself. The odds I get are either 1 or very very close to 1, such as 0.9999997, which makes things tough for me, because in practice GBC does not provide me probabilities now.Logistic Regression works poor, but at least gives better and more 'sensible' odds.
As nature of my problem, the cost of misclassifying is by the power of 2 so if I misclassify 4 of the products, I lose 2^4 more (it's unit-less but gives an idea anyway).
In the end; I would like to be able to classify with a higher success than Logistic Regression, but also be able to have more probabilities so I can set a threshold and point out the ones I am not sure of.
Any suggestions?
Thanks in advance.
machine-learning classification data-science logistic-regression naivebayes
I have a binary classification problem where I have a few great features that have the power to predict almost 100% of the test data because the problem is relatively simple.
However, as the nature of the problem requires, I have no luxury to make mistake(let's say) so instead of giving a prediction I am not sure of, I would rather have the output as probability, set a threshold and would be able to say, "if I am less than %95 sure, I will call this "NOT SURE" and act accordingly". Saying "I don't know" rather than making a mistake is better.
So far so good.
For this purpose, I tried Gaussian Bayes Classifier(I have a cont. feature) and Logistic Regression algorithms, which provide me the probability as well as the prediction for the classification.
Coming to my Problem:
GBC has around 99% success rate while Logistic Regression has lower, around 96% success rate. So I naturally would prefer to use GBC.
However, as successful as GBC is, it is also very sure of itself. The odds I get are either 1 or very very close to 1, such as 0.9999997, which makes things tough for me, because in practice GBC does not provide me probabilities now.Logistic Regression works poor, but at least gives better and more 'sensible' odds.
As nature of my problem, the cost of misclassifying is by the power of 2 so if I misclassify 4 of the products, I lose 2^4 more (it's unit-less but gives an idea anyway).
In the end; I would like to be able to classify with a higher success than Logistic Regression, but also be able to have more probabilities so I can set a threshold and point out the ones I am not sure of.
Any suggestions?
Thanks in advance.
machine-learning classification data-science logistic-regression naivebayes
machine-learning classification data-science logistic-regression naivebayes
edited Nov 16 '18 at 20:51
Esref
2511616
2511616
asked Nov 16 '18 at 13:55
crinixcrinix
807
807
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53339251%2fprobabilistic-classification-with-gaussian-bayes-classifier-vs-logistic-regressi%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53339251%2fprobabilistic-classification-with-gaussian-bayes-classifier-vs-logistic-regressi%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown