Coxeter–Dynkin diagram




Pictoral representation of symmetry



Coxeter–Dynkin diagrams for the fundamental finite Coxeter groups




Coxeter–Dynkin diagrams for the fundamental affine Coxeter groups


In geometry, a Coxeter–Dynkin diagram (or Coxeter diagram, Coxeter graph) is a graph with numerically labeled edges (called branches) representing the spatial relations between a collection of mirrors (or reflecting hyperplanes). It describes a kaleidoscopic construction: each graph "node" represents a mirror (domain facet) and the label attached to a branch encodes the dihedral angle order between two mirrors (on a domain ridge). An unlabeled branch implicitly represents order-3.


Each diagram represents a Coxeter group, and Coxeter groups are classified by their associated diagrams.


Dynkin diagrams are closely related objects, which differ from Coxeter diagrams in two respects: firstly, branches labeled "4" or greater are directed, while Coxeter diagrams are undirected; secondly, Dynkin diagrams must satisfy an additional (crystallographic) restriction, namely that the only allowed branch labels are 2, 3, 4, and 6. Dynkin diagrams correspond to and are used to classify root systems and therefore semisimple Lie algebras.[1]




Contents






  • 1 Description


  • 2 Schläfli matrix


    • 2.1 Rank 2 Coxeter groups


    • 2.2 Geometric visualizations




  • 3 Finite Coxeter groups


  • 4 Application with uniform polytopes


    • 4.1 Example polyhedra and tilings




  • 5 Affine Coxeter groups


  • 6 Hyperbolic Coxeter groups


    • 6.1 Hyperbolic groups in H2


      • 6.1.1 Arithmetic triangle group


      • 6.1.2 Hyperbolic Coxeter polygons above triangles




    • 6.2 Compact (Lannér simplex groups)


      • 6.2.1 Ranks 4–5




    • 6.3 Paracompact (Koszul simplex groups)


      • 6.3.1 Ideal simplices


      • 6.3.2 Ranks 4–10


        • 6.3.2.1 Subgroup relations of paracompact hyperbolic groups






    • 6.4 Hypercompact Coxeter groups (Vinberg polytopes)


      • 6.4.1 Vinberg polytopes with rank n+2 for n dimensional space


      • 6.4.2 Vinberg polytopes with rank n+3 for n dimensional space


      • 6.4.3 Vinberg polytopes with rank n+4 for n dimensional space






  • 7 Lorentzian groups


    • 7.1 Very-extended Coxeter Diagrams




  • 8 Geometric folding


  • 9 Complex reflections


  • 10 See also


  • 11 References


  • 12 Further reading


  • 13 External links





Description


Branches of a Coxeter–Dynkin diagram are labeled with a rational number p, representing a dihedral angle of 180°/p. When p = 2 the angle is 90° and the mirrors have no interaction, so the branch can be omitted from the diagram. If a branch is unlabeled, it is assumed to have p = 3, representing an angle of 60°. Two parallel mirrors have a branch marked with "∞". In principle, n mirrors can be represented by a complete graph in which all n(n − 1) / 2 branches are drawn. In practice, nearly all interesting configurations of mirrors include a number of right angles, so the corresponding branches are omitted.


Diagrams can be labeled by their graph structure. The first forms studied by Ludwig Schläfli are the orthoschemes which have linear graphs that generate regular polytopes and regular honeycombs. Plagioschemes are simplices represented by branching graphs, and cycloschemes are simplices represented by cyclic graphs.



Schläfli matrix


Every Coxeter diagram has a corresponding Schläfli matrix
(so named after Ludwig Schläfli), with matrix elements ai,j = aj,i = −2cos (π / p) where p is the branch order between the pairs of mirrors. As a matrix of cosines, it is also called a Gramian matrix after Jørgen Pedersen Gram. All Coxeter group Schläfli matrices are symmetric because their root vectors are normalized. It is related closely to the Cartan matrix, used in the similar but directed graph Dynkin diagrams in the limited cases of p = 2,3,4, and 6, which are NOT symmetric in general.


The determinant of the Schläfli matrix, called the Schläflian, and its sign determines whether the group is finite (positive), affine (zero), indefinite (negative). This rule is called Schläfli's Criterion.[2]


The eigenvalues of the Schläfli matrix determines whether a Coxeter group is of finite type (all positive), affine type (all non-negative, at least one is zero), or indefinite type (otherwise). The indefinite type is sometimes further subdivided, e.g. into hyperbolic and other Coxeter groups. However, there are multiple non-equivalent definitions for hyperbolic Coxeter groups. We use the following definition: A Coxeter group with connected diagram is hyperbolic if it is neither of finite nor affine type, but every proper connected subdiagram is of finite or affine type. A hyperbolic Coxeter group is compact if all subgroups are finite (i.e. have positive determinants), and paracompact if all its subgroups are finite or affine (i.e. have nonnegative determinants).


Finite and affine groups are also called elliptical and parabolic respectively. Hyperbolic groups are also called Lannér, after F. Lannér who enumerated the compact hyperbolic groups in 1950,[3] and Koszul (or quasi-Lannér) for the paracompact groups.



Rank 2 Coxeter groups


For rank 2, the type of a Coxeter group is fully determined by the determinant of the Schläfli matrix, as it is simply the product of the eigenvalues: Finite type (positive determinant), affine type (zero determinant) or hyperbolic (negative determinant). Coxeter uses an equivalent bracket notation which lists sequences of branch orders as a substitute for the node-branch graphic diagrams. Rational solutions [p/q], CDel node.pngCDel p.pngCDel rat.pngCDel q.pngCDel node.png, also exist, with gcd(p,q)=1, which define overlapping fundamental domains. For example, 3/2, 4/3, 5/2, 5/3, 5/4. and 6/5.









































Type
Finite
Affine
Hyperbolic
Geometry

Dihedral symmetry domains 1.png

Dihedral symmetry domains 2.png

Dihedral symmetry domains 3.png

Dihedral symmetry domains 4.png
...

Dihedral symmetry domains infinity.png

Horocycle mirrors.png

Dihedral symmetry ultra.png
Coxeter

CDel node c1.png
[ ]

CDel node c1.pngCDel 2.pngCDel node c3.png
[2]

CDel node c1.pngCDel 3.pngCDel node c1.png
[3]

CDel node c1.pngCDel 4.pngCDel node c3.png
[4]

CDel node.pngCDel p.pngCDel node.png
[p]

CDel node c1.pngCDel infin.pngCDel node c3.png
[∞]

CDel node c2.pngCDel infin.pngCDel node c3.png
[∞]

CDel node c2.pngCDel ultra.pngCDel node c3.png
[iπ/λ]

Order
2
4
6
8
2p

Mirror lines are colored to correspond to Coxeter diagram nodes.
Fundamental domains are alternately colored.





























































































































































Geometric visualizations


The Coxeter–Dynkin diagram can be seen as a graphic description of the fundamental domain of mirrors. A mirror represents a hyperplane within a given dimensional spherical or Euclidean or hyperbolic space. (In 2D spaces, a mirror is a line, and in 3D a mirror is a plane).


These visualizations show the fundamental domains for 2D and 3D Euclidean groups, and 2D spherical groups. For each the Coxeter diagram can be deduced by identifying the hyperplane mirrors and labelling their connectivity, ignoring 90-degree dihedral angles (order 2).










Coxeter-dynkin plane groups.png
Coxeter groups in the Euclidean plane with equivalent diagrams. Reflections are labeled as graph nodes R1, R2, etc. and are colored by their reflection order. Reflections at 90 degrees are inactive and therefore suppressed from the diagram. Parallel mirrors are connected by an ∞ labeled branch. The prismatic group I~1{displaystyle {tilde {I}}_{1}}{tilde {I}}_{1}xI~1{displaystyle {tilde {I}}_{1}}{tilde {I}}_{1} is shown as a doubling of the C~2{displaystyle {tilde {C}}_{2}}{tilde {C}}_{2}, but can also be created as rectangular domains from doubling the G~2{displaystyle {tilde {G}}_{2}}{tilde {G}}_{2} triangles. The A~2{displaystyle {tilde {A}}_{2}}{tilde {A}}_{2} is a doubling of the G~2{displaystyle {tilde {G}}_{2}}{tilde {G}}_{2} triangle.

Hyperbolic kaleidoscopes.png
Many Coxeter groups in the hyperbolic plane can be extended from the Euclidean cases as a series of hyperbolic solutions.

Coxeter-Dynkin 3-space groups.png
Coxeter groups in 3-space with diagrams. Mirrors (triangle faces) are labeled by opposite vertex 0..3. Branches are colored by their reflection order.
C~3{displaystyle {tilde {C}}_{3}}{tilde {C}}_{3} fills 1/48 of the cube. B~3{displaystyle {tilde {B}}_{3}}{tilde {B}}_{3} fills 1/24 of the cube. A~3{displaystyle {tilde {A}}_{3}}{tilde {A}}_{3} fills 1/12 of the cube.

Coxeter-Dynkin sphere groups.png
Coxeter groups in the sphere with equivalent diagrams. One fundamental domain is outlined in yellow. Domain vertices (and graph branches) are colored by their reflection order.


Finite Coxeter groups


See also polytope families for a table of end-node uniform polytopes associated with these groups.


  • Three different symbols are given for the same groups – as a letter/number, as a bracketed set of numbers, and as the Coxeter diagram.

  • The bifurcated Dn groups is half or alternated version of the regular Cn groups.

  • The bifurcated Dn and En groups are also labeled by a superscript form [3a,b,c] where a,b,c are the numbers of segments in each of the three branches.





































































































Connected finite Coxeter-Dynkin diagrams (ranks 1 to 9)
Rank

Simple Lie groups

Exceptional Lie groups
 

A1+{displaystyle {A}_{1+}}{A}_{1+}

B2+{displaystyle {B}_{2+}}{B}_{2+}

D2+{displaystyle {D}_{2+}}{D}_{2+}

E3−8{displaystyle {E}_{3-8}}{E}_{3-8}

F3−4{displaystyle {F}_{3-4}}{F}_{3-4}

G2{displaystyle {G}_{2}}{G}_{2}

H2−4{displaystyle {H}_{2-4}}{H}_{2-4}

I2(p){displaystyle {I}_{2}(p)}{I}_{2}(p)
1
A1=[ ]
CDel node.png
 
2
A2=[3]
CDel node.pngCDel 3.pngCDel node.png
B2=[4]
CDel node.pngCDel 4.pngCDel node.png
D2=A1A1
CDel nodes.png
 
G2=[6]
CDel node.pngCDel 6.pngCDel node.png
H2=[5]
CDel node.pngCDel 5.pngCDel node.png
I2[p]
CDel node.pngCDel p.pngCDel node.png
3
A3=[32]
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
B3=[3,4]
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
D3=A3
CDel nodes.pngCDel split2.pngCDel node.png
E3=A2A1
CDel nodea.pngCDel 3a.pngCDel nodea.png CDel nodeb.png
F3=B3
CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png

H3 
CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.png

4
A4=[33]
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
B4=[32,4]
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
D4=[31,1,1]
CDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.png
E4=A4
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.png
F4
CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
H4 
CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
5
A5=[34]
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
B5=[33,4]
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
D5=[32,1,1]
CDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
E5=D5
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.png
 
 
6
A6=[35]
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
B6=[34,4]
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
D6=[33,1,1]
CDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
E6=[32,2,1]
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
7
A7=[36]
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
B7=[35,4]
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
D7=[34,1,1]
CDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
E7=[33,2,1]
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
8
A8=[37]
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
B8=[36,4]
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
D8=[35,1,1]
CDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
E8=[34,2,1]
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
9
A9=[38]
CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
B9=[37,4]
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
D9=[36,1,1]
CDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
 
10+
..
..
..
..


Application with uniform polytopes






240
In constructing uniform polytopes, nodes are marked as active by a ring if a generator point is off the mirror, creating a new edge between a generator point and its mirror image. An unringed node represents an inactive mirror that generates no new points.

Kaleidoscopic construction of square.png
Two orthogonal mirrors can be used to generate a square, CDel node 1.pngCDel 2.pngCDel node 1.png, seen here with a red generator point and 3 virtual copies across the mirrors. The generator has to be off both mirrors in this orthogonal case to generate an interior. The ring markup presumes active rings have generators equal distance from all mirrors, while a rectangle can also represent a nonuniform solution.

Coxeter–Dynkin diagrams can explicitly enumerate nearly all classes of uniform polytope and uniform tessellations. Every uniform polytope with pure reflective symmetry (all but a few special cases have pure reflectional symmetry) can be represented by a Coxeter–Dynkin diagram with permutations of markups. Each uniform polytope can be generated using such mirrors and a single generator point: mirror images create new points as reflections, then polytope edges can be defined between points and a mirror image point. Faces can be constructed by cycles of edges created, etc. To specify the generating vertex, one or more nodes are marked with rings, meaning that the vertex is not on the mirror(s) represented by the ringed node(s). (If two or more mirrors are marked, the vertex is equidistant from them.) A mirror is active (creates reflections) only with respect to points not on it. A diagram needs at least one active node to represent a polytope. An unconnected diagram (subgroups separated by order-2 branches, or orthogonal mirrors) requires at least one active node in each subgraph.


All regular polytopes, represented by Schläfli symbol {p, q, r, ...}, can have their fundamental domains represented by a set of n mirrors with a related Coxeter–Dynkin diagram of a line of nodes and branches labeled by p, q, r, ..., with the first node ringed.


Uniform polytopes with one ring correspond to generator points at the corners of the fundamental domain simplex. Two rings correspond to the edges of simplex and have a degree of freedom, with only the midpoint as the uniform solution for equal edge lengths. In general k-ring generator points are on (k-1)-faces of the simplex, and if all the nodes are ringed, the generator point is in the interior of the simplex.


A secondary markup conveys a special case nonreflectional symmetry uniform polytopes. These cases exist as alternations of reflective symmetry polytopes. This markup removes the central dot of a ringed node, called a hole (circles with nodes removed), to imply alternate nodes deleted. The resulting polytope will have a subsymmetry of the original Coxeter group. A truncated alternation is called a snub.



  • A single node represents a single mirror. This is called group A1. If ringed this creates a line segment perpendicular to the mirror, represented as {}.

  • Two unattached nodes represent two perpendicular mirrors. If both nodes are ringed, a rectangle can be created, or a square if the point is at equal distance from both mirrors.

  • Two nodes attached by an order-n branch can create an n-gon if the point is on one mirror, and a 2n-gon if the point is off both mirrors. This forms the I1(n) group.

  • Two parallel mirrors can represent an infinite polygon I1(∞) group, also called Ĩ1.

  • Three mirrors in a triangle form images seen in a traditional kaleidoscope and can be represented by three nodes connected in a triangle. Repeating examples will have branches labeled as (3 3 3), (2 4 4), (2 3 6), although the last two can be drawn as a line (with the 2 branches ignored). These will generate uniform tilings.

  • Three mirrors can generate uniform polyhedra; including rational numbers gives the set of Schwarz triangles.

  • Three mirrors with one perpendicular to the other two can form the uniform prisms.






Wythoffian construction diagram.png
There are 7 reflective uniform constructions within a general triangle, based on 7 topological generator positions within the fundamental domain. Every active mirror generates an edge, with two active mirrors have generators on the domain sides and three active mirrors has the generator in the interior. One or two degrees of freedom can be solved for a unique position for equal edge lengths of the resulting polyhedron or tiling.

Polyhedron truncation example3.png
Example 7 generators on octahedral symmetry, fundamental domain triangle (4 3 2), with 8th snub generation as an alternation

The duals of the uniform polytopes are sometimes marked up with a perpendicular slash replacing ringed nodes, and a slash-hole for hole nodes of the snubs. For example, CDel node 1.pngCDel 2.pngCDel node 1.png represents a rectangle (as two active orthogonal mirrors), and CDel node f1.pngCDel 2.pngCDel node f1.png represents its dual polygon, the rhombus.



Example polyhedra and tilings


For example, the B3Coxeter group has a diagram: CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png. This is also called octahedral symmetry.


There are 7 convex uniform polyhedra that can be constructed from this symmetry group and 3 from its alternation subsymmetries, each with a uniquely marked up Coxeter–Dynkin diagram. The Wythoff symbol represents a special case of the Coxeter diagram for rank 3 graphs, with all 3 branch orders named, rather than suppressing the order 2 branches. The Wythoff symbol is able to handle the snub form, but not general alternations without all nodes ringed.




















































































































The same constructions can be made on disjointed (orthogonal) Coxeter groups like the uniform prisms, and can be seen more clearly as tilings of dihedrons and hosohedrons on the sphere, like this [6]× or [6,2] family:


































































In comparison, the [6,3], CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png family produces a parallel set of 7 uniform tilings of the Euclidean plane, and their dual tilings. There are again 3 alternations and some half symmetry version.













































































In the hyperbolic plane [7,3], CDel node.pngCDel 7.pngCDel node.pngCDel 3.pngCDel node.png family produces a parallel set of uniform tilings, and their dual tilings. There is only 1 alternation (snub) since all branch orders are odd. Many other hyperbolic families of uniform tilings can be seen at uniform tilings in hyperbolic plane.







































































Affine Coxeter groups


Families of convex uniform Euclidean tessellations are defined by the affine Coxeter groups. These groups are identical to the finite groups with the inclusion of one added node. In letter names they are given the same letter with a "~" above the letter. The index refers to the finite group, so the rank is the index plus 1. (Ernst Witt symbols for the affine groups are given as also)




  1. A~n−1{displaystyle {tilde {A}}_{n-1}}{tilde {A}}_{n-1}: diagrams of this type are cycles. (Also Pn)


  2. C~n−1{displaystyle {tilde {C}}_{n-1}}{tilde {C}}_{n-1} is associated with the hypercube regular tessellation {4, 3, ...., 4} family. (Also Rn)


  3. B~n−1{displaystyle {tilde {B}}_{n-1}}{tilde {B}}_{n-1} related to C by one removed mirror. (Also Sn)


  4. D~n−1{displaystyle {tilde {D}}_{n-1}}{tilde {D}}_{n-1} related to C by two removed mirrors. (Also Qn)


  5. E~6{displaystyle {tilde {E}}_{6}}{tilde {E}}_{6}, E~7{displaystyle {tilde {E}}_{7}}{tilde {E}}_{7}, E~8{displaystyle {tilde {E}}_{8}}{tilde {E}}_{8}. (Also T7, T8, T9)


  6. F~4{displaystyle {tilde {F}}_{4}}{tilde {F}}_{4} forms the {3,4,3,3} regular tessellation. (Also U5)


  7. G~2{displaystyle {tilde {G}}_{2}}{tilde {G}}_{2} forms 30-60-90 triangle fundamental domains. (Also V3)


  8. I~1{displaystyle {tilde {I}}_{1}}{tilde {I}}_{1} is two parallel mirrors. ( = A~1{displaystyle {tilde {A}}_{1}}{tilde {A}}_{1} = C~1{displaystyle {tilde {C}}_{1}}{tilde {C}}_{1}) (Also W2)


Composite groups can also be defined as orthogonal projects. The most common use A~1{displaystyle {tilde {A}}_{1}}{tilde {A}}_{1}, like A~12{displaystyle {tilde {A}}_{1}^{2}}{tilde {A}}_{1}^{2}, CDel node.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.png represents square or rectangular checker board domains in the Euclidean plane. And A~1G~2{displaystyle {tilde {A}}_{1}{tilde {G}}_{2}}{tilde {A}}_{1}{tilde {G}}_{2} CDel node.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node.pngCDel split1.pngCDel branch.png represents triangular prism fundamental domains in Euclidean 3-space.


























































































Affine Coxeter graphs up to (2 to 10 nodes)
Rank

A~1+{displaystyle {tilde {A}}_{1+}}{tilde {A}}_{1+} (P2+)

B~3+{displaystyle {tilde {B}}_{3+}}{tilde {B}}_{3+} (S4+)

C~1+{displaystyle {tilde {C}}_{1+}}{tilde {C}}_{1+} (R2+)

D~4+{displaystyle {tilde {D}}_{4+}}{tilde {D}}_{4+} (Q5+)

E~n{displaystyle {tilde {E}}_{n}}{tilde {E}}_{n} (Tn+1) / F~4{displaystyle {tilde {F}}_{4}}{tilde {F}}_{4} (U5) / G~2{displaystyle {tilde {G}}_{2}}{tilde {G}}_{2} (V3)
2

A~1{displaystyle {tilde {A}}_{1}}{tilde {A}}_{1}=[∞]
CDel node.pngCDel infin.pngCDel node.png
 

C~1{displaystyle {tilde {C}}_{1}}{tilde {C}}_{1}=[∞]
CDel node.pngCDel infin.pngCDel node.png
 
 
3

A~2{displaystyle {tilde {A}}_{2}}{tilde {A}}_{2}=[3[3]]
* CDel branch.pngCDel split2.pngCDel node.png

C~2{displaystyle {tilde {C}}_{2}}{tilde {C}}_{2}=[4,4]
* CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png

G~2{displaystyle {tilde {G}}_{2}}{tilde {G}}_{2}=[6,3]
* CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
4

A~3{displaystyle {tilde {A}}_{3}}{tilde {A}}_{3}=[3[4]]
* CDel node.pngCDel split1.pngCDel nodes.pngCDel split2.pngCDel node.png

B~3{displaystyle {tilde {B}}_{3}}{tilde {B}}_{3}=[4,31,1]
* CDel nodes.pngCDel split2.pngCDel node.pngCDel 4.pngCDel node.png

C~3{displaystyle {tilde {C}}_{3}}{tilde {C}}_{3}=[4,3,4]
* CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png

D~3{displaystyle {tilde {D}}_{3}}{tilde {D}}_{3}=[31,1,3−1,31,1]
CDel node.pngCDel split1.pngCDel nodes.pngCDel split2.pngCDel node.png = A~3{displaystyle {tilde {A}}_{3}}{tilde {A}}_{3}

5

A~4{displaystyle {tilde {A}}_{4}}{tilde {A}}_{4}=[3[5]]
* CDel branch.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.png

B~4{displaystyle {tilde {B}}_{4}}{tilde {B}}_{4}=[4,3,31,1]
* CDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png

C~4{displaystyle {tilde {C}}_{4}}{tilde {C}}_{4}=[4,32,4]
* CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png

D~4{displaystyle {tilde {D}}_{4}}{tilde {D}}_{4}=[31,1,1,1]
* CDel nodes.pngCDel split2.pngCDel node.pngCDel split1.pngCDel nodes.png

F~4{displaystyle {tilde {F}}_{4}}{tilde {F}}_{4}=[3,4,3,3]
* CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
6

A~5{displaystyle {tilde {A}}_{5}}{tilde {A}}_{5}=[3[6]]
* CDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.png

B~5{displaystyle {tilde {B}}_{5}}{tilde {B}}_{5}=[4,32,31,1]
* CDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png

C~5{displaystyle {tilde {C}}_{5}}{tilde {C}}_{5}=[4,33,4]
* CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png

D~5{displaystyle {tilde {D}}_{5}}{tilde {D}}_{5}=[31,1,3,31,1]
* CDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png
 
7

A~6{displaystyle {tilde {A}}_{6}}{tilde {A}}_{6}=[3[7]]
* CDel branch.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.png

B~6{displaystyle {tilde {B}}_{6}}{tilde {B}}_{6}=[4,33,31,1]
CDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png

C~6{displaystyle {tilde {C}}_{6}}{tilde {C}}_{6}=[4,34,4]
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png

D~6{displaystyle {tilde {D}}_{6}}{tilde {D}}_{6}=[31,1,32,31,1]
CDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png

E~6{displaystyle {tilde {E}}_{6}}{tilde {E}}_{6}=[32,2,2]
CDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
8

A~7{displaystyle {tilde {A}}_{7}}{tilde {A}}_{7}=[3[8]]
* CDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.png

B~7{displaystyle {tilde {B}}_{7}}{tilde {B}}_{7}=[4,34,31,1]
* CDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png

C~7{displaystyle {tilde {C}}_{7}}{tilde {C}}_{7}=[4,35,4]
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png

D~7{displaystyle {tilde {D}}_{7}}{tilde {D}}_{7}=[31,1,33,31,1]
* CDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png

E~7{displaystyle {tilde {E}}_{7}}{tilde {E}}_{7}=[33,3,1]
* CDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.png
9

A~8{displaystyle {tilde {A}}_{8}}{tilde {A}}_{8}=[3[9]]
* CDel branch.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.png

B~8{displaystyle {tilde {B}}_{8}}{tilde {B}}_{8}=[4,35,31,1]
CDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png

C~8{displaystyle {tilde {C}}_{8}}{tilde {C}}_{8}=[4,36,4]
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png

D~8{displaystyle {tilde {D}}_{8}}{tilde {D}}_{8}=[31,1,34,31,1]
CDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png

E~8{displaystyle {tilde {E}}_{8}}{tilde {E}}_{8}=[35,2,1]
* CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
10

A~9{displaystyle {tilde {A}}_{9}}{tilde {A}}_{9}=[3[10]]
* CDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.png

B~9{displaystyle {tilde {B}}_{9}}{tilde {B}}_{9}=[4,36,31,1]
CDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png

C~9{displaystyle {tilde {C}}_{9}}{tilde {C}}_{9}=[4,37,4]
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png

D~9{displaystyle {tilde {D}}_{9}}{tilde {D}}_{9}=[31,1,35,31,1]
CDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png
11
...
...
...
...


Hyperbolic Coxeter groups


There are many infinite hyperbolic Coxeter groups. Hyperbolic groups are categorized as compact or not, with compact groups having bounded fundamental domains. Compact simplex hyperbolic groups (Lannér simplices) exist as rank 3 to 5. Paracompact simplex groups (Koszul simplices) exist up to rank 10. Hypercompact (Vinberg polytopes) groups have been explored but not been fully determined. In 2006, Allcock proved that there are infinitely many compact Vinberg polytopes for dimension up to 6, and infinitely many finite-volume Vinberg polytopes for dimension up to 19,[4] so a complete enumeration is not possible. All of these fundamental reflective domains, both simplices and nonsimplices, are often called Coxeter polytopes or sometimes less accurately Coxeter polyhedra.



Hyperbolic groups in H2












































Poincaré disk model of fundamental domain triangles
Example right triangles [p,q]

H2checkers 237.png
[3,7]

H2checkers 238.png
[3,8]

Hyperbolic domains 932 black.png
[3,9]

H2checkers 23i.png
[3,∞]

H2checkers 245.png
[4,5]

H2checkers 246.png
[4,6]

H2checkers 247.png
[4,7]

H2checkers 248.png
[4,8]

H2checkers 24i.png
[∞,4]

H2checkers 255.png
[5,5]

H2checkers 256.png
[5,6]

H2checkers 257.png
[5,7]

H2checkers 266.png
[6,6]

H2checkers 2ii.png
[∞,∞]
Example general triangles [(p,q,r)]

H2checkers 334.png
[(3,3,4)]

H2checkers 335.png
[(3,3,5)]

H2checkers 336.png
[(3,3,6)]

H2checkers 337.png
[(3,3,7)]

H2checkers 33i.png
[(3,3,∞)]

H2checkers 344.png
[(3,4,4)]

H2checkers 366.png
[(3,6,6)]

H2checkers 3ii.png
[(3,∞,∞)]

H2checkers 666.png
[(6,6,6)]

Infinite-order triangular tiling.svg
[(∞,∞,∞)]

Two-dimensional hyperbolic triangle groups exist as rank 3 Coxeter diagrams, defined by triangle (p q r) for:


1p+1q+1r<1.{displaystyle {frac {1}{p}}+{frac {1}{q}}+{frac {1}{r}}<1.}{frac {1}{p}}+{frac {1}{q}}+{frac {1}{r}}<1.

There are infinitely many compact triangular hyperbolic Coxeter groups, including linear and triangle graphs. The linear graphs exist for right triangles (with r=2).[5]














Compact hyperbolic Coxeter groups
Linear
Cyclic

[p,q], CDel node.pngCDel p.pngCDel node.pngCDel q.pngCDel node.png:
2(p+q)<pq

CDel node.pngCDel 7.pngCDel node.pngCDel 3.pngCDel node.png
CDel node.pngCDel 8.pngCDel node.pngCDel 3.pngCDel node.png
CDel node.pngCDel 9.pngCDel node.pngCDel 3.pngCDel node.png

...
CDel node.pngCDel 5.pngCDel node.pngCDel 4.pngCDel node.png
CDel node.pngCDel 6.pngCDel node.pngCDel 4.pngCDel node.png

...
CDel node.pngCDel 5.pngCDel node.pngCDel 5.pngCDel node.png
CDel node.pngCDel 6.pngCDel node.pngCDel 5.pngCDel node.png

...


∞ [(p,q,r)], CDel pqr.png: p+q+r>9






CDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.png
CDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.png
CDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.png



CDel 3.pngCDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.png
CDel 3.pngCDel node.pngCDel 5.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.png
CDel 3.pngCDel node.pngCDel 5.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.png
CDel 3.pngCDel node.pngCDel 5.pngCDel node.pngCDel 5.pngCDel node.pngCDel 3.png
CDel 3.pngCDel node.pngCDel 5.pngCDel node.pngCDel 5.pngCDel node.pngCDel 4.png
CDel 3.pngCDel node.pngCDel 5.pngCDel node.pngCDel 5.pngCDel node.pngCDel 5.png



CDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.png
CDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.png
CDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.png
CDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel 5.pngCDel node.pngCDel 3.png
CDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel 5.pngCDel node.pngCDel 4.png
CDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel 5.pngCDel node.pngCDel 5.png
CDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel 6.pngCDel node.pngCDel 3.png
CDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel 6.pngCDel node.pngCDel 4.png
CDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel 6.pngCDel node.pngCDel 5.png
CDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel 6.pngCDel node.pngCDel 6.png



CDel 3.pngCDel node.pngCDel 7.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.png

...




Paracompact Coxeter groups of rank 3 exist as limits to the compact ones.











Linear graphs
Cyclic graphs


  • [p,∞] CDel node.pngCDel p.pngCDel node.pngCDel infin.pngCDel node.png

  • [∞,∞] CDel node.pngCDel infin.pngCDel node.pngCDel infin.pngCDel node.png




  • [(p,q,∞)] CDel 3.pngCDel node.pngCDel p.pngCDel node.pngCDel q.pngCDel node.pngCDel infin.pngCDel 3.png

  • [(p,∞,∞)] CDel 3.pngCDel node.pngCDel p.pngCDel node.pngCDel infin.pngCDel node.pngCDel infin.pngCDel 3.png

  • [(∞,∞,∞)] CDel 3.pngCDel node.pngCDel infin.pngCDel node.pngCDel infin.pngCDel node.pngCDel infin.pngCDel 3.png





Arithmetic triangle group


The hyperbolic triangle groups that are also arithmetic groups form a finite subset. By computer search the complete list was determined by Kisao Takeuchi in his 1977 paper Arithmetic triangle groups.[6] There are 85 total, 76 compact and 9 paracompact.















Right triangles (p q 2)
General triangles (p q r)
Compact groups: (76)


CDel node.pngCDel 3.pngCDel node.pngCDel 7.pngCDel node.png, CDel node.pngCDel 3.pngCDel node.pngCDel 8.pngCDel node.png, CDel node.pngCDel 3.pngCDel node.pngCDel 9.pngCDel node.png, CDel node.pngCDel 3.pngCDel node.pngCDel 10.pngCDel node.png, CDel node.pngCDel 3.pngCDel node.pngCDel 11.pngCDel node.png, CDel node.pngCDel 3.pngCDel node.pngCDel 12.pngCDel node.png, CDel node.pngCDel 3.pngCDel node.pngCDel 14.pngCDel node.png, CDel node.pngCDel 3.pngCDel node.pngCDel 16.pngCDel node.png, CDel node.pngCDel 3.pngCDel node.pngCDel 18.pngCDel node.png, CDel node.pngCDel 3.pngCDel node.pngCDel 2x.pngCDel 4.pngCDel node.png, CDel node.pngCDel 3.pngCDel node.pngCDel 3x.pngCDel 0x.pngCDel node.png


CDel node.pngCDel 4.pngCDel node.pngCDel 5.pngCDel node.png, CDel node.pngCDel 4.pngCDel node.pngCDel 6.pngCDel node.png, CDel node.pngCDel 4.pngCDel node.pngCDel 7.pngCDel node.png, CDel node.pngCDel 4.pngCDel node.pngCDel 8.pngCDel node.png, CDel node.pngCDel 4.pngCDel node.pngCDel 10.pngCDel node.png, CDel node.pngCDel 4.pngCDel node.pngCDel 12.pngCDel node.png, CDel node.pngCDel 4.pngCDel node.pngCDel 18.pngCDel node.png


CDel node.pngCDel 5.pngCDel node.pngCDel 5.pngCDel node.png, CDel node.pngCDel 5.pngCDel node.pngCDel 6.pngCDel node.png, CDel node.pngCDel 5.pngCDel node.pngCDel 8.pngCDel node.png, CDel node.pngCDel 5.pngCDel node.pngCDel 10.pngCDel node.png, CDel node.pngCDel 5.pngCDel node.pngCDel 20.pngCDel node.png, CDel node.pngCDel 5.pngCDel node.pngCDel 3x.pngCDel 0x.pngCDel node.png


CDel node.pngCDel 6.pngCDel node.pngCDel 6.pngCDel node.png, CDel node.pngCDel 6.pngCDel node.pngCDel 8.pngCDel node.png, CDel node.pngCDel 6.pngCDel node.pngCDel 12.pngCDel node.png, CDel node.pngCDel 7.pngCDel node.pngCDel 7.pngCDel node.png, CDel node.pngCDel 7.pngCDel node.pngCDel 14.pngCDel node.png


CDel node.pngCDel 8.pngCDel node.pngCDel 8.pngCDel node.png, CDel node.pngCDel 8.pngCDel node.pngCDel 16.pngCDel node.png, CDel node.pngCDel 9.pngCDel node.pngCDel 18.pngCDel node.png, CDel node.pngCDel 10.pngCDel node.pngCDel 10.pngCDel node.png, CDel node.pngCDel 12.pngCDel node.pngCDel 12.pngCDel node.png, CDel node.pngCDel 12.pngCDel node.pngCDel 2x.pngCDel 4.pngCDel node.png, CDel node.pngCDel 15.pngCDel node.pngCDel 3x.pngCDel 0x.pngCDel node.png, CDel node.pngCDel 18.pngCDel node.pngCDel 18.pngCDel node.png


Paracompact right triangles: (4)



CDel node.pngCDel 3.pngCDel node.pngCDel infin.pngCDel node.png, CDel node.pngCDel 4.pngCDel node.pngCDel infin.pngCDel node.png, CDel node.pngCDel 6.pngCDel node.pngCDel infin.pngCDel node.png, CDel node.pngCDel infin.pngCDel node.pngCDel infin.pngCDel node.png

General triangles: (39)


CDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.png, CDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.png, CDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.png, CDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 7.png, CDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 8.png, CDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 9.png, CDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 12.png, CDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 15.png


CDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.png, CDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 6.png, CDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 12.png, CDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.pngCDel 5.png, CDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel 6.png, CDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel 18.png, CDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 8.pngCDel node.pngCDel 8.png, CDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 8.pngCDel node.pngCDel 2x.pngCDel 4.png, CDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 10.pngCDel node.pngCDel 3x.pngCDel 0x.png, CDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 12.pngCDel node.pngCDel 12.png


CDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.png, CDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 5.png, CDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 6.png, CDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 9.png, CDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 5.pngCDel node.pngCDel 5.png, CDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 6.pngCDel node.pngCDel 6.png, CDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 8.pngCDel node.pngCDel 8.png, CDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 16.pngCDel node.pngCDel 16.png


CDel 3.pngCDel node.pngCDel 5.pngCDel node.pngCDel 5.pngCDel node.pngCDel 5.png, CDel 3.pngCDel node.pngCDel 5.pngCDel node.pngCDel 5.pngCDel node.pngCDel 10.png, CDel 3.pngCDel node.pngCDel 5.pngCDel node.pngCDel 5.pngCDel node.pngCDel 15.png, CDel 3.pngCDel node.pngCDel 5.pngCDel node.pngCDel 10.pngCDel node.pngCDel 10.png


CDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel 6.pngCDel node.pngCDel 6.png, CDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel 12.pngCDel node.pngCDel 12.png, CDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel 2x.pngCDel 4.pngCDel node.pngCDel 2x.pngCDel 4.png, CDel 3.pngCDel node.pngCDel 7.pngCDel node.pngCDel 7.pngCDel node.pngCDel 7.png, CDel 3.pngCDel node.pngCDel 8.pngCDel node.pngCDel 8.pngCDel node.pngCDel 8.png, CDel 3.pngCDel node.pngCDel 9.pngCDel node.pngCDel 9.pngCDel node.pngCDel 9.png, CDel 3.pngCDel node.pngCDel 9.pngCDel node.pngCDel 18.pngCDel node.pngCDel 18.png, CDel 3.pngCDel node.pngCDel 12.pngCDel node.pngCDel 12.pngCDel node.pngCDel 12.png, CDel 3.pngCDel node.pngCDel 15.pngCDel node.pngCDel 15.pngCDel node.pngCDel 15.png


Paracompact general triangles: (5)



CDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel infin.png, CDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel infin.pngCDel node.pngCDel infin.png, CDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel infin.png, CDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel 6.pngCDel node.pngCDel infin.png, CDel 3.pngCDel node.pngCDel infin.pngCDel node.pngCDel infin.pngCDel node.pngCDel infin.png



(2 3 7), (2 3 8), (2 3 9), (2 3 10), (2 3 11), (2 3 12), (2 3 14), (2 3 16), (2 3 18), (2 3 24), (2 3 30)

(2 4 5), (2 4 6), (2 4 7), (2 4 8), (2 4 10), (2 4 12), (2 4 18),

(2 5 5), (2 5 6), (2 5 8), (2 5 10), (2 5 20), (2 5 30)

(2 6 6), (2 6 8), (2 6 12)

(2 7 7), (2 7 14), (2 8 8), (2 8 16), (2 9 18)

(2 10 10) (2 12 12) (2 12 24), (2 15 30), (2 18 18)


(2 3 ∞) (2,4 ∞) (2,6 ∞) (2 ∞ ∞)



(3 3 4), (3 3 5), (3 3 6), (3 3 7), (3 3 8), (3 3 9), (3 3 12), (3 3 15)

(3 4 4), (3 4 6), (3 4 12), (3 5 5), (3 6 6), (3 6 18), (3 8 8), (3 8 24), (3 10 30), (3 12 12)

(4 4 4), (4 4 5), (4 4 6), (4 4 9), (4 5 5), (4 6 6), (4 8 8), (4 16 16)

(5 5 5), (5 5 10), (5 5 15), (5 10 10)

(6 6 6), (6 12 12), (6 24 24)

(7 7 7) (8 8 8) (9 9 9) (9 18 18) (12 12 12) (15 15 15)



(3,3 ∞) (3 ∞ ∞)

(4,4 ∞) (6 6 ∞) (∞ ∞ ∞)




Hyperbolic Coxeter polygons above triangles





















Fundamental domains of quadrilateral groups

Hyperbolic domains 3222.png
CDel node.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node.pngCDel infin.pngCDel node.png or CDel branch.pngCDel 2a2b-cross.pngCDel nodes.png
[∞,3,∞]
[iπ/λ1,3,iπ/λ2]
(*3222)

Hyperbolic domains 2233.png
CDel labelinfin.pngCDel branch.pngCDel split2.pngCDel node.pngCDel infin.pngCDel node.png or CDel branch.pngCDel 3a2b-cross.pngCDel nodes.png
[((3,∞,3)),∞]
[((3,iπ/λ1,3)),iπ/λ2]
(*3322)

H2chess 246a.png
CDel labelinfin.pngCDel branch.pngCDel 3ab.pngCDel branch.pngCDel labelinfin.png or CDel branch.pngCDel 2a2b-cross.pngCDel branch.png
[(3,∞)[2]]
[(3,iπ/λ1,3,iπ/λ2)]
(*3232)

H2chess 248a.png
CDel labelinfin.pngCDel branch.pngCDel 4a4b.pngCDel branch.pngCDel labelinfin.png or CDel label4.pngCDel branch.pngCDel 2a2b-cross.pngCDel branch.pngCDel label4.png
[(4,∞)[2]]
[(4,iπ/λ1,4,iπ/λ2)]
(*4242)

H2chess 246b.png
CDel branch.pngCDel 3a3b-cross.pngCDel branch.png


(*3333)
Domains with ideal vertices

Hyperbolic domains i222.png
CDel labelinfin.pngCDel branch.pngCDel 2a2b-cross.pngCDel nodes.png
[iπ/λ1,∞,iπ/λ2]
(*∞222)

Hyperbolic domains ii22.png
CDel labelinfin.pngCDel branch.pngCDel ia2b-cross.pngCDel nodes.png

(*∞∞22)

H2chess 24ia.png
CDel labelinfin.pngCDel branch.pngCDel 2a2b-cross.pngCDel branch.pngCDel labelinfin.png
[(iπ/λ1,∞,iπ/λ2,∞)]
(*2∞2∞)

H2chess 24ib.png
CDel labelinfin.pngCDel branch.pngCDel iaib-cross.pngCDel branch.pngCDel labelinfin.png

(*∞∞∞∞)

H2chess 248b.png
CDel label4.pngCDel branch.pngCDel 4a4b-cross.pngCDel branch.pngCDel label4.png

(*4444)

Other H2 hyperbolic kaleidoscopes can be constructed from higher order polygons. Like triangle groups these kaleidoscopes can be identified by a cyclic sequence of mirror intersection orders around the fundamental domain, as (a b c d ...), or equivalently in orbifold notation as *abcd.... Coxeter–Dynkin diagrams for these polygonal kaleidoscopes can be seen as a degenerate (n-1)-simplex fundamental domains, with a cyclic of branches order a,b,c... and the remaining n*(n-3)/2 branches are labeled as infinite (∞) representing the non-intersecting mirrors. The only nonhyperbolic example is Euclidean symmetry four mirrors in a square or rectangle as CDel node.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node.pngCDel infin.pngCDel node.png, [∞,2,∞] (orbifold *2222). Another branch representation for non-intersecting mirrors by Vinberg gives infinite branches as dotted or dashed lines, so this diagram can be shown as CDel nodes.pngCDel 2a2b-cross.pngCDel nodes.png, with the four order-2 branches suppressed around the perimeter.


For example, a quadrilateral domain (a b c d) will have two infinite order branches connecting ultraparallel mirrors. The smallest hyperbolic example is CDel node.pngCDel infin.pngCDel node.pngCDel 3.pngCDel node.pngCDel infin.pngCDel node.png, [∞,3,∞] or [iπ/λ1,3,iπ/λ2] (orbifold *3222), where (λ12) are the distance between the ultraparallel mirrors. The alternate expression is CDel branch.pngCDel 2a2b-cross.pngCDel nodes.png, with three order-2 branches suppressed around the perimeter. Similarly (2 3 2 3) (orbifold *3232) can be represented as CDel branch.pngCDel 2a2b-cross.pngCDel branch.png and (3 3 3 3), (orbifold *3333) can be represented as a complete graph CDel branch.pngCDel 3a3b-cross.pngCDel branch.png.


The highest quadrilateral domain (∞ ∞ ∞ ∞) is an infinite square, represented by a complete tetrahedral graph with 4 perimeter branches as ideal vertices and two diagonal branches as infinity (shown as dotted lines) for ultraparallel mirrors: CDel labelinfin.pngCDel branch.pngCDel iaib-cross.pngCDel branch.pngCDel labelinfin.png.



Compact (Lannér simplex groups)


Compact hyperbolic groups are called Lannér groups after Folke Lannér who first studied them in 1950.[7] They only exist as rank 4 and 5 graphs. Coxeter studied the linear hyperbolic coxeter groups in his 1954 paper Regular Honeycombs in hyperbolic space,[8] which included two rational solutions in hyperbolic 4-space: [5/2,5,3,3] = CDel node.pngCDel 5.pngCDel rat.pngCDel 2x.pngCDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png and [5,5/2,5,3] = CDel node.pngCDel 5.pngCDel node.pngCDel 5.pngCDel rat.pngCDel 2x.pngCDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.png.



Ranks 4–5



The fundamental domain of either of the two bifurcating groups, [5,31,1] and [5,3,31,1], is double that of a corresponding linear group, [5,3,4] and [5,3,3,4] respectively. Letter names are given by Johnson as extended Witt symbols.[9]






























Compact hyperbolic Coxeter groups
Dimension
Hd
Rank
Total count
Linear
Bifurcating
Cyclic

H3
4
9

3:

BH¯3{displaystyle {overline {BH}}_{3}}{displaystyle {overline {BH}}_{3}} = [4,3,5]: CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
3{displaystyle {overline {K}}_{3}}{displaystyle {overline {K}}_{3}} = [5,3,5]: CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
3{displaystyle {overline {J}}_{3}}{displaystyle {overline {J}}_{3}} = [3,5,3]: CDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.png



DH¯3{displaystyle {overline {DH}}_{3}}{displaystyle {overline {DH}}_{3}} = [5,31,1]: CDel node.pngCDel 5.pngCDel node.pngCDel split1.pngCDel nodes.png



AB^3{displaystyle {widehat {AB}}_{3}}{widehat {AB}}_{3} = [(33,4)]: CDel label4.pngCDel branch.pngCDel 3ab.pngCDel branch.png 
AH^3{displaystyle {widehat {AH}}_{3}}{widehat {AH}}_{3} = [(33,5)]: CDel label5.pngCDel branch.pngCDel 3ab.pngCDel branch.png 
BB^3{displaystyle {widehat {BB}}_{3}}{widehat {BB}}_{3} = [(3,4)[2]]: CDel label4.pngCDel branch.pngCDel 3ab.pngCDel branch.pngCDel label4.png
BH^3{displaystyle {widehat {BH}}_{3}}{widehat {BH}}_{3} = [(3,4,3,5)]: CDel label4.pngCDel branch.pngCDel 3ab.pngCDel branch.pngCDel label5.png
HH^3{displaystyle {widehat {HH}}_{3}}{widehat {HH}}_{3} = [(3,5)[2]]: CDel label5.pngCDel branch.pngCDel 3ab.pngCDel branch.pngCDel label5.png



H4
5
5

3:

4{displaystyle {overline {H}}_{4}}{displaystyle {overline {H}}_{4}} = [33,5]: CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
BH¯4{displaystyle {overline {BH}}_{4}}{displaystyle {overline {BH}}_{4}} = [4,3,3,5]: CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png
4{displaystyle {overline {K}}_{4}}{displaystyle {overline {K}}_{4}} = [5,3,3,5]: CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.png



DH¯4{displaystyle {overline {DH}}_{4}}{displaystyle {overline {DH}}_{4}} = [5,3,31,1]: CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png



AF^4{displaystyle {widehat {AF}}_{4}}{widehat {AF}}_{4} = [(34,4)]: CDel label4.pngCDel branch.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.png




Paracompact (Koszul simplex groups)




An example order-3 apeirogonal tiling, {∞,3} with one green apeirogon and its circumscribed horocycle


Paracompact (also called noncompact) hyperbolic Coxeter groups contain affine subgroups and have asymptotic simplex fundamental domains. The highest paracompact hyperbolic Coxeter group is rank 10. These groups are named after French mathematician Jean-Louis Koszul.[10] They are also called quasi-Lannér groups extending the compact Lannér groups. The list was determined complete by computer search by M. Chein and published in 1969.[11]


By Vinberg, all but eight of these 72 compact and paracompact simplices are arithmetic. Two of the nonarithmetic groups are compact: CDel label4.pngCDel branch.pngCDel 3ab.pngCDel branch.pngCDel label5.png and CDel label4.pngCDel branch.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.png. The other six nonarithmetic groups are all paracompact, with five 3-dimensional groups CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png, CDel node.pngCDel 5.pngCDel node.pngCDel split1.pngCDel branch.png, CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png, CDel label4.pngCDel branch.pngCDel 3ab.pngCDel branch.pngCDel label6.png, and CDel label5.pngCDel branch.pngCDel 3ab.pngCDel branch.pngCDel label6.png, and one 5-dimensional group CDel label4.pngCDel branch.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel branch.png.



Ideal simplices




Ideal fundamental domains of CDel labelinfin.pngCDel branch.pngCDel split2-ii.pngCDel node.png, [(∞,∞,∞)] seen in the Poincare disk model


There are 5 hyperbolic Coxeter groups expressing ideal simplices, graphs where removal of any one node results in an affine Coxeter group. Thus all vertices of this ideal simplex are at infinity.[12]











































Rank
Ideal group
Affine subgroups
3
[(∞,∞,∞)]
CDel labelinfin.pngCDel branch.pngCDel split2-ii.pngCDel node.png
[∞]
CDel node.pngCDel infin.pngCDel node.png
4
[4[4]]
CDel label4.pngCDel branch.pngCdel 4-4.pngCDel branch.pngCDel label4.png
[4,4]
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
4
[3[3,3]]
CDel tet.png
[3[3]]
CDel node.pngCDel split1.pngCDel branch.png
4
[(3,6)[2]]
CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch.pngCDel label6.png
[3,6]
CDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
6
[(3,3,4)[2]]
CDel label4.pngCDel branch.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel branch.pngCDel label4.png
[4,3,3,4], [3,4,3,3]
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png, CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png


Ranks 4–10




Infinite Euclidean cells like a hexagonal tiling, properly scaled converge to a single ideal point at infinity, like the hexagonal tiling honeycomb, {6,3,3}, as shown with this single cell in a Poincaré disk model projection.



There are a total of 58 paracompact hyperbolic Coxeter groups from rank 4 through 10. All 58 are grouped below in five categories. Letter symbols are given by Johnson as Extended Witt symbols, using PQRSTWUV from the affine Witt symbols, and adding LMNOXYZ. These hyperbolic groups are given an overline, or a hat, for cycloschemes. The bracket notation from Coxeter is a linearized representation of the Coxeter group.



































































Hyperbolic paracompact groups
Rank Total count Groups
4 23

BR^3{displaystyle {widehat {BR}}_{3}}{widehat {BR}}_{3} = [(3,3,4,4)]: CDel label4.pngCDel branch.pngCDel 4-3.pngCDel branch.pngCDel 2.png
CR^3{displaystyle {widehat {CR}}_{3}}{widehat {CR}}_{3} = [(3,43)]: CDel label4.pngCDel branch.pngCDel 4-3.pngCDel branch.pngCDel label4.png
RR^3{displaystyle {widehat {RR}}_{3}}{widehat {RR}}_{3} = [4[4]]: CDel label4.pngCDel branch.pngCdel 4-4.pngCDel branch.pngCDel label4.png
AV^3{displaystyle {widehat {AV}}_{3}}{widehat {AV}}_{3} = [(33,6)]: CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch.pngCDel 2.png
BV^3{displaystyle {widehat {BV}}_{3}}{widehat {BV}}_{3} = [(3,4,3,6)]: CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch.pngCDel label4.png
HV^3{displaystyle {widehat {HV}}_{3}}{widehat {HV}}_{3} = [(3,5,3,6)]: CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch.pngCDel label5.png
VV^3{displaystyle {widehat {VV}}_{3}}{widehat {VV}}_{3} = [(3,6)[2]]: CDel label6.pngCDel branch.pngCDel 3ab.pngCDel branch.pngCDel label6.png



3{displaystyle {overline {P}}_{3}}{displaystyle {overline {P}}_{3}} = [3,3[3]]: CDel branch.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.png
BP¯3{displaystyle {overline {BP}}_{3}}{displaystyle {overline {BP}}_{3}} = [4,3[3]]: CDel branch.pngCDel split2.pngCDel node.pngCDel 4.pngCDel node.png
HP¯3{displaystyle {overline {HP}}_{3}}{displaystyle {overline {HP}}_{3}} = [5,3[3]]: CDel branch.pngCDel split2.pngCDel node.pngCDel 5.pngCDel node.png
VP¯3{displaystyle {overline {VP}}_{3}}{displaystyle {overline {VP}}_{3}} = [6,3[3]]: CDel branch.pngCDel split2.pngCDel node.pngCDel 6.pngCDel node.png
DV¯3{displaystyle {overline {DV}}_{3}}{displaystyle {overline {DV}}_{3}} = [6,31,1]: CDel nodes.pngCDel split2.pngCDel node.pngCDel 6.pngCDel node.png
3{displaystyle {overline {O}}_{3}}{displaystyle {overline {O}}_{3}} = [3,41,1]: CDel nodes.pngCDel split2-44.pngCDel node.pngCDel 3.pngCDel node.png
3{displaystyle {overline {M}}_{3}}{displaystyle {overline {M}}_{3}} = [41,1,1]: CDel nodes.pngCDel split2-44.pngCDel node.pngCDel 4.pngCDel node.png



3{displaystyle {overline {R}}_{3}}{displaystyle {overline {R}}_{3}} = [3,4,4]: CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
3{displaystyle {overline {N}}_{3}}{displaystyle {overline {N}}_{3}} = [43]: CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
3{displaystyle {overline {V}}_{3}}{displaystyle {overline {V}}_{3}} = [3,3,6]: CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
BV¯3{displaystyle {overline {BV}}_{3}}{displaystyle {overline {BV}}_{3}} = [4,3,6]: CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
HV¯3{displaystyle {overline {HV}}_{3}}{displaystyle {overline {HV}}_{3}} = [5,3,6]: CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png
3{displaystyle {overline {Y}}_{3}}{displaystyle {overline {Y}}_{3}} = [3,6,3]: CDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
3{displaystyle {overline {Z}}_{3}}{displaystyle {overline {Z}}_{3}} = [6,3,6]: CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.png



DP¯3{displaystyle {overline {DP}}_{3}}{displaystyle {overline {DP}}_{3}} = [3x]: CDel node.pngCDel split1.pngCDel branch.pngCDel split2.pngCDel node.png
PP¯3{displaystyle {overline {PP}}_{3}}{displaystyle {overline {PP}}_{3}} = [3[3,3]]: CDel tet.png


5 9

4{displaystyle {overline {P}}_{4}}{displaystyle {overline {P}}_{4}} = [3,3[4]]: CDel node.pngCDel split1.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.png
BP¯4{displaystyle {overline {BP}}_{4}}{displaystyle {overline {BP}}_{4}} = [4,3[4]]: CDel node.pngCDel split1.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel 4.pngCDel node.png
FR^4{displaystyle {widehat {FR}}_{4}}{widehat {FR}}_{4} = [(32,4,3,4)]: CDel branch.pngCdel 4-4.pngCDel nodes.pngCDel split2.pngCDel node.png
DP¯4{displaystyle {overline {DP}}_{4}}{displaystyle {overline {DP}}_{4}} = [3[3]x]: CDel node.pngCDel split1.pngCDel branchbranch.pngCDel split2.pngCDel node.png



4{displaystyle {overline {N}}_{4}}{displaystyle {overline {N}}_{4}} = [4,3,((4,2,3))]: CDel nodes.pngCDel split2-43.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
4{displaystyle {overline {O}}_{4}}{displaystyle {overline {O}}_{4}} = [3,4,31,1]: CDel nodes.pngCDel split2.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
4{displaystyle {overline {S}}_{4}}{displaystyle {overline {S}}_{4}} = [4,32,1]: CDel nodes.pngCDel split2-43.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png



4{displaystyle {overline {R}}_{4}}{displaystyle {overline {R}}_{4}} = [(3,4)2]: CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png



4{displaystyle {overline {M}}_{4}}{displaystyle {overline {M}}_{4}} = [4,31,1,1]: CDel node.pngCDel branch3.pngCDel splitsplit2.pngCDel node.pngCDel 4.pngCDel node.png
6 12

5{displaystyle {overline {P}}_{5}}{displaystyle {overline {P}}_{5}} = [3,3[5]]: CDel branch.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.png
AU^5{displaystyle {widehat {AU}}_{5}}{widehat {AU}}_{5} = [(35,4)]: CDel label4.pngCDel branch.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel branch.png
AR^5{displaystyle {widehat {AR}}_{5}}{widehat {AR}}_{5} = [(3,3,4)[2]]: CDel label4.pngCDel branch.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel branch.pngCDel label4.png



5{displaystyle {overline {S}}_{5}}{displaystyle {overline {S}}_{5}} = [4,3,32,1]: CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 4a.pngCDel nodea.png
5{displaystyle {overline {O}}_{5}}{displaystyle {overline {O}}_{5}} = [3,4,31,1]: CDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
5{displaystyle {overline {N}}_{5}}{displaystyle {overline {N}}_{5}} = [3,(3,4)1,1]: CDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 4a4b.pngCDel nodes.png



5{displaystyle {overline {U}}_{5}}{displaystyle {overline {U}}_{5}} = [33,4,3]: CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
5{displaystyle {overline {X}}_{5}}{displaystyle {overline {X}}_{5}} = [3,3,4,3,3]: CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
5{displaystyle {overline {R}}_{5}}{displaystyle {overline {R}}_{5}} = [3,4,3,3,4]: CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png



5{displaystyle {overline {Q}}_{5}}{displaystyle {overline {Q}}_{5}} = [32,1,1,1]: CDel node.pngCDel branch3.pngCDel splitsplit2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png

5{displaystyle {overline {M}}_{5}}{displaystyle {overline {M}}_{5}} = [4,3,31,1,1]: CDel node.pngCDel branch3.pngCDel splitsplit2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
5{displaystyle {overline {L}}_{5}}{displaystyle {overline {L}}_{5}} = [31,1,1,1,1]: CDel node.pngCDel branch3.pngCDel splitsplit2.pngCDel node.pngCDel split1.pngCDel nodes.png


7 3

6{displaystyle {overline {P}}_{6}}{displaystyle {overline {P}}_{6}} = [3,3[6]]:
CDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.png



6{displaystyle {overline {Q}}_{6}}{displaystyle {overline {Q}}_{6}} = [31,1,3,32,1]:
CDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png

6{displaystyle {overline {S}}_{6}}{displaystyle {overline {S}}_{6}} = [4,32,32,1]:
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 4a.pngCDel nodea.png

8 4

7{displaystyle {overline {P}}_{7}}{displaystyle {overline {P}}_{7}} = [3,3[7]]:
CDel branch.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.png

7{displaystyle {overline {Q}}_{7}}{displaystyle {overline {Q}}_{7}} = [31,1,32,32,1]:
CDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png

7{displaystyle {overline {S}}_{7}}{displaystyle {overline {S}}_{7}} = [4,33,32,1]:
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 4a.pngCDel nodea.png

7{displaystyle {overline {T}}_{7}}{displaystyle {overline {T}}_{7}} = [33,2,2]:
CDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
9 4

8{displaystyle {overline {P}}_{8}}{displaystyle {overline {P}}_{8}} = [3,3[8]]:
CDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.png

8{displaystyle {overline {Q}}_{8}}{displaystyle {overline {Q}}_{8}} = [31,1,33,32,1]:
CDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png

8{displaystyle {overline {S}}_{8}}{displaystyle {overline {S}}_{8}} = [4,34,32,1]:
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 4a.pngCDel nodea.png

8{displaystyle {overline {T}}_{8}}{displaystyle {overline {T}}_{8}} = [34,3,1]:
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
10 3

9{displaystyle {overline {P}}_{9}}{displaystyle {overline {P}}_{9}} = [3,3[9]]:
CDel branch.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.png

9{displaystyle {overline {Q}}_{9}}{displaystyle {overline {Q}}_{9}} = [31,1,34,32,1]:
CDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png

9{displaystyle {overline {S}}_{9}}{displaystyle {overline {S}}_{9}} = [4,35,32,1]:
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 4a.pngCDel nodea.png

9{displaystyle {overline {T}}_{9}}{displaystyle {overline {T}}_{9}} = [36,2,1]:
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png


Subgroup relations of paracompact hyperbolic groups

These trees represents subgroup relations of paracompact hyperbolic groups. Subgroup indices on each connection are given in red.[13] Subgroups of index 2 represent a mirror removal, and fundamental domain doubling. Others can be inferred by commensurability (integer ratio of volumes) for the tetrahedral domains.





















Hypercompact Coxeter groups (Vinberg polytopes)


Just like the hyperbolic plane H2 has nontriangular polygonal domains, higher-dimensional reflective hyperbolic domains also exists. These nonsimplex domains can be considered degenerate simplices with non-intersecting mirrors given infinite order, or in a Coxeter diagram, such branches are given dotted or dashed lines. These nonsimplex domains are called Vinberg polytopes, after Ernest Vinberg for his Vinberg's algorithm for finding nonsimplex fundamental domain of a hyperbolic reflection group. Geometrically these fundamental domains can be classified as quadrilateral pyramids, or prisms or other polytopes with edges as the intersection of two mirrors having dihedral angles as π/n for n=2,3,4...


In a simplex-based domain, there are n+1 mirrors for n-dimensional space. In non-simplex domains, there are more than n+1 mirrors. The list is finite, but not completely known. Instead partial lists have been enumerated as n+k mirrors for k as 2,3, and 4.


Hypercompact Coxeter groups in three dimensional space or higher differ from two dimensional groups in one essential respect. Two hyperbolic n-gons having the same angles in the same cyclic order may have different edge lengths and are not in general congruent. In contrast Vinberg polytopes in 3 dimensions or higher are completely determined by the dihedral angles. This fact is based on the Mostow rigidity theorem, that two isomorphic groups generated by reflections in Hn for n>=3, define congruent fundamental domains (Vinberg polytopes).



Vinberg polytopes with rank n+2 for n dimensional space


The complete list of compact hyperbolic Vinberg polytopes with rank n+2 mirrors for n-dimensions has been enumerated by F. Esselmann in 1996.[14] A partial list was published in 1974 by I. M. Kaplinskaya.[15]


The complete list of paracompact solutions was published by P. Tumarkin in 2003, with dimensions from 3 to 17.[16]


The smallest paracompact form in H3 can be represented by CDel node.pngCDel ultra.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel ultra.pngCDel node.png, or [∞,3,3,∞] which can be constructed by a mirror removal of paracompact hyperbolic group [3,4,4] as [3,4,1+,4]. The doubled fundamental domain changes from a tetrahedron into a quadrilateral pyramid. Another pyramids include [4,4,1+,4] = [∞,4,4,∞], CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h0.pngCDel 4.pngCDel node.png = CDel node.pngCDel ultra.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel ultra.pngCDel node.png. Removing a mirror from some of the cyclic hyperbolic Coxeter graphs become bow-tie graphs: [(3,3,4,1+,4)] = [((3,∞,3)),((3,∞,3))] or CDel branchu.pngCDel split2.pngCDel node.pngCDel split1.pngCDel branchu.png, [(3,4,4,1+,4)] = [((4,∞,3)),((3,∞,4))] or CDel branchu.pngCDel split2-43.pngCDel node.pngCDel split1-43.pngCDel branchu.png, [(4,4,4,1+,4)] = [((4,∞,4)),((4,∞,4))] or CDel branchu.pngCDel split2-44.pngCDel node.pngCDel split1-44.pngCDel branchu.png.


Other valid paracompact graphs with quadrilateral pyramid fundamental domains include:













Dimension
Rank
Graphs
H3
5



CDel node.pngCDel ultra.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel ultra.pngCDel node.png, CDel node.pngCDel ultra.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel ultra.pngCDel node.png, CDel node.pngCDel ultra.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel ultra.pngCDel node.png, CDel node.pngCDel ultra.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.pngCDel ultra.pngCDel node.png, CDel node.pngCDel ultra.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel ultra.pngCDel node.png


CDel branchu.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel ultra.pngCDel node.png, CDel branchu.pngCDel split2.pngCDel node.pngCDel 4.pngCDel node.pngCDel ultra.pngCDel node.png, CDel branchu.pngCDel split2-43.pngCDel node.pngCDel 3.pngCDel node.pngCDel ultra.pngCDel node.png, CDel branchu.pngCDel split2-43.pngCDel node.pngCDel 4.pngCDel node.pngCDel ultra.pngCDel node.png, CDel branchu.pngCDel split2-44.pngCDel node.pngCDel 3.pngCDel node.pngCDel ultra.pngCDel node.png, CDel branchu.pngCDel split2-44.pngCDel node.pngCDel 4.pngCDel node.pngCDel ultra.pngCDel node.png


CDel branchu.pngCDel split2-53.pngCDel node.pngCDel 3.pngCDel node.pngCDel ultra.pngCDel node.png, CDel branchu.pngCDel split2-54.pngCDel node.pngCDel 3.pngCDel node.pngCDel ultra.pngCDel node.png, CDel branchu.pngCDel split2-55.pngCDel node.pngCDel 3.pngCDel node.pngCDel ultra.pngCDel node.png, CDel branchu.pngCDel split2-63.pngCDel node.pngCDel 3.pngCDel node.pngCDel ultra.pngCDel node.png, CDel branchu.pngCDel split2-64.pngCDel node.pngCDel 3.pngCDel node.pngCDel ultra.pngCDel node.png, CDel branchu.pngCDel split2-65.pngCDel node.pngCDel 3.pngCDel node.pngCDel ultra.pngCDel node.png, CDel branchu.pngCDel split2-66.pngCDel node.pngCDel 3.pngCDel node.pngCDel ultra.pngCDel node.png


CDel branchu.pngCDel split2.pngCDel node.pngCDel split1.pngCDel branchu.png, CDel branchu.pngCDel split2-43.pngCDel node.pngCDel split1.pngCDel branchu.png, CDel branchu.pngCDel split2-53.pngCDel node.pngCDel split1.pngCDel branchu.png, CDel branchu.pngCDel split2-44.pngCDel node.pngCDel split1.pngCDel branchu.png, CDel branchu.pngCDel split2-43.pngCDel node.pngCDel split1-43.pngCDel branchu.png, CDel branchu.pngCDel split2-44.pngCDel node.pngCDel split1-43.pngCDel branchu.png, CDel branchu.pngCDel split2-44.pngCDel node.pngCDel split1-44.pngCDel branchu.png, CDel branchu.pngCDel split2-54.pngCDel node.pngCDel split1.pngCDel branchu.png, CDel branchu.pngCDel split2-55.pngCDel node.pngCDel split1.pngCDel branchu.png, CDel branchu.pngCDel split2-63.pngCDel node.pngCDel split1.pngCDel branchu.png, CDel branchu.pngCDel split2-64.pngCDel node.pngCDel split1.pngCDel branchu.png, CDel branchu.pngCDel split2-65.pngCDel node.pngCDel split1.pngCDel branchu.png, CDel branchu.pngCDel split2-66.pngCDel node.pngCDel split1.pngCDel branchu.png



Another subgroup [1+,41,1,1] = [∞,4,1+,4,∞] = [∞[6]]. CDel node.pngCDel 4.pngCDel node h0.pngCDel split1-44.pngCDel nodes.png = CDel node.pngCDel ultra.pngCDel node.pngCDel 4.pngCDel node h0.pngCDel 4.pngCDel node.pngCDel ultra.pngCDel node.png = CDel node.pngCDel split1-uu.pngCDel nodes.pngCDel 2a2b-cross.pngCDel nodes.pngCDel split2-uu.pngCDel node.png.
[17]



Vinberg polytopes with rank n+3 for n dimensional space


There are a finite number of degenerate fundamental simplices exist up to 8-dimensions. The complete list of Compact Vinberg polytopes with rank n+3 mirrors for n-dimensions has been enumerated by P. Tumarkin in 2004. These groups are labeled by dotted/broken lines for ultraparallel branches. The complete list of non-Compact Vinberg polytopes with rank n+3 mirrors and with one non-simple vertex for n-dimensions has been enumerated by Mike Roberts.[18]


For 4 to 8 dimensions, rank 7 to 11 Coxeter groups are counted as 44, 16, 3, 1, and 1 respectively.[19] The highest was discovered by Bugaenko in 1984 in dimension 8, rank 11:[20]









































Dimensions
Rank
Cases
Graphs
H4
7
44 ...
H5
8
16 ..
H6
9
3

CDel node.pngCDel 5.pngCDel node.pngCDel split1-43.pngCDel nodes.pngCDel ua3b.pngCDel nodes u0.pngCDel ua3b.pngCDel nodes.pngCDel split2-43.pngCDel node.pngCDel 5.pngCDel node.png

CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 3aub.pngCDel branch.pngCDel 3a.pngCDel 10a.pngCDel nodea.png

CDel nodea.pngCDel 5a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3aub.pngCDel nodes.pngCDel splitcross.pngCDel branch.pngCDel label5.png
H7
10
1

CDel node.pngCDel split1-53.pngCDel nodes.pngCDel 3ab.pngCDel branch.pngCDel ua3b.pngCDel branch.pngCDel 3ab.pngCDel nodes.pngCDel split2-53.pngCDel node.png
H8
11
1

CDel nodea.pngCDel 5a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3aub.pngCDel nodes 0u.pngCDel 3aub.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 5a.pngCDel nodea.png


Vinberg polytopes with rank n+4 for n dimensional space


There are a finite number of degenerate fundamental simplices exist up to 8-dimensions. Compact Vinberg polytopes with rank n+4 mirrors for n-dimensions has been explored by A. Felikson and P. Tumarkin in 2005.[21]



Lorentzian groups








Regular honeycombs with Lorentzian groups

Hyperbolic honeycomb 3-3-7 poincare cc.png
{3,3,7} viewed outside of Poincare ball model

Hyperbolic honeycomb 7-3-3 poincare vc.png
{7,3,3} viewed outside of Poincare ball model



This shows rank 5 Lorentzian groups arranged as subgroups from [6,3,3,3], and [6,3,6,3]. The highly symmetric group CDel pent.png, [3[3,3,3]] is an index 120 subgroup of [6,3,3,3].


Lorentzian groups for simplex domains can be defined as graphs beyond the paracompact hyperbolic forms. These are sometimes called super-ideal simplices and are also related to a Lorentzian geometry, named after Hendrik Lorentz in the field of special and general relativity space-time, containing one (or more) time-like dimensional components whose self dot products are negative.[9]Danny Calegari calls these convex cocompact Coxeter groups in n-dimensional hyperbolic space.[22][23]


A 1982 paper by George Maxwell, Sphere Packings and Hyperbolic Reflection Groups, enumerates the finite list of Lorentzian of rank 5 to 11. He calls them level 2, meaning removal any permutation of 2 nodes leaves a finite or Euclidean graph. His enumeration is complete, but didn't list graphs that are a subgroup of another. All higher-order branch Coxeter groups of rank-4 are Lorentzian, ending in the limit as a complete graph 3-simplex Coxeter-Dynkin diagram with 6 infinite order branches, which can be expressed as [∞[3,3]]. Rank 5-11 have a finite number of groups 186, 66, 36, 13, 10, 8, and 4 Lorentzian groups respectively.[24] A 2013 paper by H. Chen and J.-P. Labbé, Lorentzian Coxeter groups and Boyd--Maxwell ball packings, recomputed and published the complete list.[25]


For the highest ranks 8-11, the complete lists are:
































































Lorentzian Coxeter groups
Rank
Total
count
Groups
4

[3,3,7] ... [∞,∞,∞]: CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 7.pngCDel node.png... CDel node.pngCDel infin.pngCDel node.pngCDel infin.pngCDel node.pngCDel infin.pngCDel node.png

[4,3[3]] ... [∞,∞[3]]: CDel node.pngCDel 4.pngCDel node.pngCDel split1.pngCDel branch.png... CDel node.pngCDel infin.pngCDel node.pngCDel split1-ii.pngCDel branch.pngCDel labelinfin.png

[5,41,1] ... [∞1,1,1]: CDel node.pngCDel 5.pngCDel node.pngCDel split1-44.pngCDel nodes.png... CDel node.pngCDel infin.pngCDel node.pngCDel split1-ii.pngCDel nodes.png

... [(5,4,3,3)] ... [∞[4]]: ... CDel label5.pngCDel branch.pngCDel 4a3b.pngCDel branch.png... CDel labelinfin.pngCDel branch.pngCDel iaib.pngCDel branch.pngCDel labelinfin.png

... [4×] ... [∞×]: ... CDel node.pngCDel split1-ii-i.pngCDel branch.pngCDel split2-ii.pngCDel node.png

... [4[3,3]] ... [∞[3,3]]


5
186
...[3[3,3,3]]:CDel pent.png...

6
66

7
36
[31,1,1,1,1,1]: CDel node.pngCDel branch3.pngCDel splitsplit2.pngCDel node.pngCDel splitsplit1.pngCDel branch3.pngCDel node.png...
8
13

[3,3,3[6]]:CDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.png

[3,3[6],3]:CDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.png

[3,3[2+4],3]:CDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel branch.pngCDel 3a.pngCDel nodea.png

[3,3[1+5],3]:CDel nodes.pngCDel 3ab.pngCDel branch.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel branch.png

[3[ ]e×[3]]:CDel node.pngCDel splitsplit1.pngCDel nodeabc.pngCDel 3abc.pngCDel nodeabc.pngCDel splitsplit2.pngCDel node.png



[4,3,3,33,1]:CDel nodea.pngCDel 4a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png

[31,1,3,33,1]:CDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png

[3,(3,3,4)1,1]:CDel nodea.pngCDel 4a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 4a.pngCDel nodea.png
CDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 4a.pngCDel nodea.png
CDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.png

[32,1,3,32,1]:CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png




[4,3,3,32,2]:CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.png

[31,1,3,32,2]:CDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.png


9
10

[3,3[3+4],3]:CDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.png

[3,3[9]]:CDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel branch.png

[3,3[2+5],3]:CDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split5b.pngCDel nodes.png


[32,1,32,32,1]:CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
[33,1,33,4]:CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 4a.pngCDel nodea.png

[33,1,3,3,31,1]:CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.png


[33,3,2]:CDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png

[32,2,4]:CDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png

[32,2,33,4]:CDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png

[32,2,3,3,31,1]:CDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png


10
8
[3,3[8],3]:CDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.png

[3,3[3+5],3]:CDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel branch.pngCDel 3a.pngCDel nodea.png

[3,3[9]]:CDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel branch.png


[32,1,33,32,1]:CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
[35,3,1]:CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png

[33,1,34,4]:CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 4a.pngCDel nodea.png

[33,1,33,31,1]:CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.png


[34,4,1]:CDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.png
11
4

[32,1,34,32,1]:CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
[32,1,36,4]:CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 4a.pngCDel nodea.png

[32,1,35,31,1]:CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.png


[37,2,1]:CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png


Very-extended Coxeter Diagrams


One usage includes a very-extended definition from the direct Dynkin diagram usage which considers affine groups as extended, hyperbolic groups over-extended, and a third node as very-extended simple groups. These extensions are usually marked by an exponent of 1,2, or 3 + symbols for the number of extended nodes. This extending series can be extended backwards, by sequentially removing the nodes from the same position in the graph, although the process stops after removing branching node. The E8 extended family is the most commonly shown example extending backwards from E3 and forwards to E11.


The extending process can define a limited series of Coxeter graphs that progress from finite to affine to hyperbolic to Lorentzian. The determinant of the Cartan matrices determine where the series changes from finite (positive) to affine (zero) to hyperbolic (negative), and ending as a Lorentzian group, containing at least one hyperbolic subgroup.[26] The noncrystalographic Hn groups forms an extended series where H4 is extended as a compact hyperbolic and over-extended into a lorentzian group.


The determinant of the Schläfli matrix by rank are:[27]



  • det(A1n=[2n-1]) = 2n (Finite for all n)

  • det(An=[3n-1]) = n+1 (Finite for all n)

  • det(Bn=[4,3n-2]) = 2 (Finite for all n)

  • det(Dn=[3n-3,1,1]) = 4 (Finite for all n)


Determinants of the Schläfli matrix in exceptional series are:



  • det(En=[3n-3,2,1]) = 9-n (Finite for E3(=A2A1), E4(=A4), E5(=D5), E6, E7 and E8, affine at E9 (E~8{displaystyle {tilde {E}}_{8}}{tilde {E}}_{8}), hyperbolic at E10)

  • det([3n-4,3,1]) = 2(8-n) (Finite for n=4 to 7, affine (E~7{displaystyle {tilde {E}}_{7}}{tilde {E}}_{7}), and hyperbolic at n=8.)

  • det([3n-4,2,2]) = 3(7-n) (Finite for n=4 to 6, affine (E~6{displaystyle {tilde {E}}_{6}}{tilde {E}}_{6}), and hyperbolic at n=7.)

  • det(Fn=[3,4,3n-3]) = 5-n (Finite for F3(=B3) to F4, affine at F5 (F~4{displaystyle {tilde {F}}_{4}}{tilde {F}}_{4}), hyperbolic at F6)

  • det(Gn=[6,3n-2]) = 3-n (Finite for G2, affine at G3 (G~2{displaystyle {tilde {G}}_{2}}{tilde {G}}_{2}), hyperbolic at G4)





















































































Smaller extended series
Finite

A2{displaystyle A_{2}}A_{2}

C2{displaystyle C_{2}}C_{2}

G2{displaystyle G_{2}}G_{2}

A3{displaystyle A_{3}}A_{3}

B3{displaystyle B_{3}}B_{3}

C3{displaystyle C_{3}}C_{3}

H4{displaystyle H_{4}}H_{4}
Rank n
[3[3],3n-3]
[4,4,3n-3]
Gn=[6,3n-2]
[3[4],3n-4]
[4,31,n-3]
[4,3,4,3n-4]
Hn=[5,3n-2]
2
[3]
A2
CDel branch.png
[4]
C2
CDel node.pngCDel 4.pngCDel node.png
[6]
G2
CDel node.pngCDel 6.pngCDel node.png

[2]
A12
CDel nodes.png
[4]
C2
CDel node.pngCDel 4.pngCDel node.png
[5]
H2
CDel node.pngCDel 5.pngCDel node.png
3
[3[3]]
A2+=A~2{displaystyle {tilde {A}}_{2}}{tilde {A}}_{2}
CDel branch.pngCDel split2.pngCDel node c1.png
[4,4]
C2+=C~2{displaystyle {tilde {C}}_{2}}{tilde {C}}_{2}
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node c1.png
[6,3]
G2+=G~2{displaystyle {tilde {G}}_{2}}{tilde {G}}_{2}
CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node c1.png
[3,3]=A3
CDel node.pngCDel split1.pngCDel nodes.png
[4,3]
B3
CDel nodes.pngCDel split2-43.pngCDel node.png
[4,3]
C3
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
[5,3]
H3
CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.png
4
[3[3],3]
A2++=3{displaystyle {overline {P}}_{3}}{displaystyle {overline {P}}_{3}}
CDel branch.pngCDel split2.pngCDel node c1.pngCDel 3.pngCDel node c2.png
[4,4,3]
C2++=3{displaystyle {overline {R}}_{3}}{displaystyle {overline {R}}_{3}}
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node c1.pngCDel 3.pngCDel node c2.png
[6,3,3]
G2++=3{displaystyle {overline {V}}_{3}}{displaystyle {overline {V}}_{3}}
CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node c1.pngCDel 3.pngCDel node c2.png
[3[4]]
A3+=A~3{displaystyle {tilde {A}}_{3}}{tilde {A}}_{3}
CDel node.pngCDel split1.pngCDel nodes.pngCDel split2.pngCDel node c1.png
[4,31,1]
B3+=B~3{displaystyle {tilde {B}}_{3}}{tilde {B}}_{3}
CDel nodes.pngCDel split2-43.pngCDel node.pngCDel 3.pngCDel node c1.png
[4,3,4]
C3+=C~3{displaystyle {tilde {C}}_{3}}{tilde {C}}_{3}
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node c1.png
[5,3,3]
H4
CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
5
[3[3],3,3]
A2+++
CDel branch.pngCDel split2.pngCDel node c1.pngCDel 3.pngCDel node c2.pngCDel 3.pngCDel node c3.png
[4,4,3,3]
C2+++
CDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node c1.pngCDel 3.pngCDel node c2.pngCDel 3.pngCDel node c3.png
[6,3,3,3]
G2+++
CDel node.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node c1.pngCDel 3.pngCDel node c2.pngCDel 3.pngCDel node c3.png
[3[4],3]
A3++=4{displaystyle {overline {P}}_{4}}{displaystyle {overline {P}}_{4}}
CDel node.pngCDel split1.pngCDel nodes.pngCDel split2.pngCDel node c1.pngCDel 3.pngCDel node c2.png
[4,32,1]
B3++=4{displaystyle {overline {S}}_{4}}{displaystyle {overline {S}}_{4}}
CDel nodes.pngCDel split2-43.pngCDel node.pngCDel 3.pngCDel node c1.pngCDel 3.pngCDel node c2.png
[4,3,4,3]
C3++=4{displaystyle {overline {R}}_{4}}{displaystyle {overline {R}}_{4}}
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node c1.pngCDel 3.pngCDel node c2.png
[5,33]
H5=4{displaystyle {overline {H}}_{4}}{displaystyle {overline {H}}_{4}}
CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
6



[3[4],3,3]
A3+++
CDel node.pngCDel split1.pngCDel nodes.pngCDel split2.pngCDel node c1.pngCDel 3.pngCDel node c2.pngCDel 3.pngCDel node c3.png
[4,33,1]
B3+++
CDel nodes.pngCDel split2-43.pngCDel node.pngCDel 3.pngCDel node c1.pngCDel 3.pngCDel node c2.pngCDel 3.pngCDel node c3.png
[4,3,4,3,3]
C3+++
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node c1.pngCDel 3.pngCDel node c2.pngCDel 3.pngCDel node c3.png
[5,34]
H6
CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
Det(Mn)
3(3-n)
2(3-n)
3-n
4(4-n)
2(4-n)






































































































Middle extended series
Finite

A4{displaystyle A_{4}}A_{4}

B4{displaystyle B_{4}}B_{4}

C4{displaystyle C_{4}}C_{4}

D4{displaystyle D_{4}}D_{4}

F4{displaystyle F_{4}}F_{4}

A5{displaystyle A_{5}}A_{5}

B5{displaystyle B_{5}}B_{5}

D5{displaystyle D_{5}}D_{5}
Rank n
[3[5],3n-5]
[4,3,3n-4,1]
[4,3,3,4,3n-5]
[3n-4,1,1,1]
[3,4,3n-3]
[3[6],3n-6]
[4,3,3,3n-5,1]
[31,1,3,3n-5,1]
3

[4,3−1,1]
B2A1
CDel nodea.pngCDel 4a.pngCDel nodea.pngCDel 2.pngCDel nodeb.png
[4,3]
B3
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
[3−1,1,1,1]
A13
CDel nodeabc.png
[3,4]
B3
CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png

[4,3,3]
C3
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
4
[33]
A4
CDel branch.pngCDel 3ab.pngCDel nodes.png
[4,3,3]
B4
CDel nodea.pngCDel 4a.pngCDel nodea.pngCDel 3a.pngCDel branch.png
[4,3,3]
C4
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
[30,1,1,1]
D4
CDel node.pngCDel branch3.pngCDel splitsplit2.pngCDel node.png
[3,4,3]
F4
CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png

[4,3,3,3−1,1]
B3A1
CDel nodea.pngCDel 4a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 2.pngCDel nodeb.png
[31,1,3,3−1,1]
A3A1
CDel nodea.pngCDel 3a.pngCDel branch.pngCDel 2.pngCDel nodeb.png
5
[3[5]]
A4+=A~4{displaystyle {tilde {A}}_{4}}{tilde {A}}_{4}
CDel branch.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node c1.png
[4,3,31,1]
B4+=B~4{displaystyle {tilde {B}}_{4}}{tilde {B}}_{4}
CDel nodea.pngCDel 4a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea c1.png
[4,3,3,4]
C4+=C~4{displaystyle {tilde {C}}_{4}}{tilde {C}}_{4}
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
[31,1,1,1]
D4+=D~4{displaystyle {tilde {D}}_{4}}{tilde {D}}_{4}
CDel node.pngCDel branch3.pngCDel splitsplit2.pngCDel node.pngCDel 3.pngCDel node c1.png
[3,4,3,3]
F4+=F~4{displaystyle {tilde {F}}_{4}}{tilde {F}}_{4}
CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node c1.png
[34]
A5
CDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.png
[4,3,3,3,3]
B5
CDel nodea.pngCDel 4a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.png
[31,1,3,3]
D5
CDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel branch.png
6
[3[5],3]
A4++=5{displaystyle {overline {P}}_{5}}{displaystyle {overline {P}}_{5}}
CDel branch.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node c1.pngCDel 3.pngCDel node c2.png
[4,3,32,1]
B4++=5{displaystyle {overline {S}}_{5}}{displaystyle {overline {S}}_{5}}
CDel nodea.pngCDel 4a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea c1.pngCDel 3a.pngCDel nodea c2.png
[4,3,3,4,3]
C4++=5{displaystyle {overline {R}}_{5}}{displaystyle {overline {R}}_{5}}
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node c1.pngCDel 3.pngCDel node c2.png
[32,1,1,1]
D4++=5{displaystyle {overline {Q}}_{5}}{displaystyle {overline {Q}}_{5}}
CDel node.pngCDel branch3.pngCDel splitsplit2.pngCDel node.pngCDel 3.pngCDel node c1.pngCDel 3.pngCDel node c2.png
[3,4,33]
F4++=5{displaystyle {overline {U}}_{5}}{displaystyle {overline {U}}_{5}}
CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node c1.pngCDel 3.pngCDel node c2.png
[3[6]]
A5+=A~5{displaystyle {tilde {A}}_{5}}{tilde {A}}_{5}
CDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node c1.png
[4,3,3,31,1]
B5+=B~5{displaystyle {tilde {B}}_{5}}{tilde {B}}_{5}
CDel nodea.pngCDel 4a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea c1.png
[31,1,3,31,1]
D5+=D~5{displaystyle {tilde {D}}_{5}}{tilde {D}}_{5}
CDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea c1.png
7
[3[5],3,3]
A4+++
CDel branch.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node c1.pngCDel 3.pngCDel node c2.pngCDel 3.pngCDel node c3.png
[4,3,33,1]
B4+++
CDel nodea.pngCDel 4a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea c1.pngCDel 3a.pngCDel nodea c2.pngCDel 3a.pngCDel nodea c3.png
[4,3,3,4,3,3]
C4+++
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node c1.pngCDel 3.pngCDel node c2.pngCDel 3.pngCDel node c3.png
[33,1,1,1]
D4+++
CDel node.pngCDel branch3.pngCDel splitsplit2.pngCDel node.pngCDel 3.pngCDel node c1.pngCDel 3.pngCDel node c2.pngCDel 3.pngCDel node c3.png
[3,4,34]
F4+++
CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node c1.pngCDel 3.pngCDel node c2.pngCDel 3.pngCDel node c3.png
[3[6],3]
A5++=6{displaystyle {overline {P}}_{6}}{displaystyle {overline {P}}_{6}}
CDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node c1.pngCDel 3.pngCDel node c2.png
[4,3,3,32,1]
B5++=6{displaystyle {overline {S}}_{6}}{displaystyle {overline {S}}_{6}}
CDel nodea.pngCDel 4a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea c1.pngCDel 3a.pngCDel nodea c2.png
[31,1,3,32,1]
D5++=6{displaystyle {overline {Q}}_{6}}{displaystyle {overline {Q}}_{6}}
CDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea c1.pngCDel 3a.pngCDel nodea c2.png
8





[3[6],3,3]
A5+++
CDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node c1.pngCDel 3.pngCDel node c2.pngCDel 3.pngCDel node c3.png
[4,3,3,33,1]
B5+++
CDel nodea.pngCDel 4a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea c1.pngCDel 3a.pngCDel nodea c2.pngCDel 3a.pngCDel nodea c3.png
[31,1,3,33,1]
D5+++
CDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea c1.pngCDel 3a.pngCDel nodea c2.pngCDel 3a.pngCDel nodea c3.png
Det(Mn)
5(5-n)
2(5-n)
4(5-n)
5-n
6(6-n)
4(6-n)





















































































































































Some higher extended series
Finite

A6{displaystyle A_{6}}A_{6}

B6{displaystyle B_{6}}B_{6}

D6{displaystyle D_{6}}D_{6}

E6{displaystyle E_{6}}E_{6}

A7{displaystyle A_{7}}A_{7}

B7{displaystyle B_{7}}B_{7}

D7{displaystyle D_{7}}D_{7}

E7{displaystyle E_{7}}E_{7}

E8{displaystyle E_{8}}E_{8}
Rank n
[3[7],3n-7]
[4,33,3n-6,1]
[31,1,3,3,3n-6,1]
[3n-5,2,2]
[3[8],3n-8]
[4,34,3n-7,1]
[31,1,3,3,3,3n-7,1]
[3n-5,3,1]
En=[3n-4,2,1]
3








[3−1,2,1]
E3=A2A1
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 2.pngCDel nodeb.png
4



[3−1,2,2]
A22
CDel nodes.pngCDel 3ab.pngCDel nodes.png



[3−1,3,1]
A3A1
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 2.pngCDel nodeb.png
[30,2,1]
E4=A4
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.png
5

[4,3,3,3,3−1,1]
B4A1
CDel nodea.pngCDel 4a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 2.pngCDel nodeb.png
[31,1,3,3,3−1,1]
D4A1
CDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 2.pngCDel nodeb.png
[30,2,2]
A5
CDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.png



[30,3,1]
A5
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.png
[31,2,1]
E5=D5
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.png
6
[35]
A6
CDel branch.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.png
[4,34]
B6
CDel nodea.pngCDel 4a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.png
[31,1,3,3,3]
D6
CDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.png
[31,2,2]
E6
CDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.png

[4,3,3,3,3,3−1,1]
B5A1
CDel nodea.pngCDel 4a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 2.pngCDel nodeb.png
[31,1,3,3,3,3−1,1]
D5A1
CDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 2.pngCDel nodeb.png
[31,3,1]
D6
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.png
[32,2,1]
E6*
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
7
[3[7]]
A6+=A~6{displaystyle {tilde {A}}_{6}}{tilde {A}}_{6}
CDel branch.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node c1.png
[4,33,31,1]
B6+=B~6{displaystyle {tilde {B}}_{6}}{tilde {B}}_{6}
CDel nodea.pngCDel 4a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea c1.png
[31,1,3,3,31,1]
D6+=D~6{displaystyle {tilde {D}}_{6}}{tilde {D}}_{6}
CDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea c1.png
[32,2,2]
E6+=E~6{displaystyle {tilde {E}}_{6}}{tilde {E}}_{6}
CDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node c1.png
[36]
A7
CDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.png
[4,35]
B7
CDel nodea.pngCDel 4a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.png
[31,1,3,3,3,30,1]
D7
CDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.png
[32,3,1]
E7*
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
[33,2,1]
E7*
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
8
[3[7],3]
A6++=7{displaystyle {overline {P}}_{7}}{displaystyle {overline {P}}_{7}}
CDel branch.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node c1.pngCDel 3.pngCDel node c2.png
[4,33,32,1]
B6++=7{displaystyle {overline {S}}_{7}}{displaystyle {overline {S}}_{7}}
CDel nodea.pngCDel 4a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea c1.pngCDel 3a.pngCDel nodea c2.png
[31,1,3,3,32,1]
D6++=7{displaystyle {overline {Q}}_{7}}{displaystyle {overline {Q}}_{7}}
CDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea c1.pngCDel 3a.pngCDel nodea c2.png
[33,2,2]
E6++=7{displaystyle {overline {T}}_{7}}{displaystyle {overline {T}}_{7}}
CDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node c1.pngCDel 3.pngCDel node c2.png
[3[8]]
A7+=A~7{displaystyle {tilde {A}}_{7}}{tilde {A}}_{7} *
CDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node c1.png
[4,34,31,1]
B7+=B~7{displaystyle {tilde {B}}_{7}}{tilde {B}}_{7} *
CDel nodea.pngCDel 4a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea c1.png
[31,1,3,3,3,31,1]
D7+=D~7{displaystyle {tilde {D}}_{7}}{tilde {D}}_{7} *
CDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea c1.png
[33,3,1]
E7+=E~7{displaystyle {tilde {E}}_{7}}{tilde {E}}_{7} *
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea c1.png
[34,2,1]
E8*
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
9
[3[7],3,3]
A6+++
CDel branch.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node c1.pngCDel 3.pngCDel node c2.pngCDel 3.pngCDel node c3.png
[4,33,33,1]
B6+++
CDel nodea.pngCDel 4a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea c1.pngCDel 3a.pngCDel nodea c2.pngCDel 3a.pngCDel nodea c3.png
[31,1,3,3,33,1]
D6+++
CDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea c1.pngCDel 3a.pngCDel nodea c2.pngCDel 3a.pngCDel nodea c3.png
[34,2,2]
E6+++
CDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node c1.pngCDel 3.pngCDel node c2.pngCDel 3.pngCDel node c3.png
[3[8],3]
A7++=8{displaystyle {overline {P}}_{8}}{displaystyle {overline {P}}_{8}} *
CDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node c1.pngCDel 3.pngCDel node c2.png
[4,34,32,1]
B7++=8{displaystyle {overline {S}}_{8}}{displaystyle {overline {S}}_{8}} *
CDel nodea.pngCDel 4a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea c1.pngCDel 3a.pngCDel nodea c2.png
[31,1,3,3,3,32,1]
D7++=8{displaystyle {overline {Q}}_{8}}{displaystyle {overline {Q}}_{8}} *
CDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea c1.pngCDel 3a.pngCDel nodea c2.png
[34,3,1]
E7++=8{displaystyle {overline {T}}_{8}}{displaystyle {overline {T}}_{8}} *
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea c1.pngCDel 3a.pngCDel nodea c2.png
[35,2,1]
E9=E8+=E~8{displaystyle {tilde {E}}_{8}}{tilde {E}}_{8} *
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea c1.png
10




[3[8],3,3]
A7+++*
CDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel split2.pngCDel node c1.pngCDel 3.pngCDel node c2.pngCDel 3.pngCDel node c3.png
[4,34,33,1]
B7+++*
CDel nodea.pngCDel 4a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea c1.pngCDel 3a.pngCDel nodea c2.pngCDel 3a.pngCDel nodea c3.png
[31,1,3,3,3,33,1]
D7+++*
CDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea c1.pngCDel 3a.pngCDel nodea c2.pngCDel 3a.pngCDel nodea c3.png
[35,3,1]
E7+++*
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea c1.pngCDel 3a.pngCDel nodea c2.pngCDel 3a.pngCDel nodea c3.png
[36,2,1]
E10=E8++=9{displaystyle {overline {T}}_{9}}{displaystyle {overline {T}}_{9}} *
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea c1.pngCDel 3a.pngCDel nodea c2.png
11








[37,2,1]
E11=E8+++*
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea c1.pngCDel 3a.pngCDel nodea c2.pngCDel 3a.pngCDel nodea c3.png
Det(Mn)
7(7-n)
2(7-n)
4(7-n)
3(7-n)
8(8-n)
2(8-n)
4(8-n)
2(8-n)
9-n


Geometric folding

























































































































Finite and affine foldings[28]
φA : AΓ --> AΓ' for finite types
Γ
Γ'
Folding description
Coxeter–Dynkin diagrams
I2(h)
Γ(h)
Dihedral folding

Geometric folding Coxeter graphs.png
Bn
A2n
(I,sn)
Dn+1, A2n-1
(A3,+/-ε)
F4
E6
(A3,±ε)
H4
E8
(A4,±ε)
H3
D6
H2
A4
G2
A5
(A5,±ε)
D4
(D4,±ε)
φ: AΓ+ --> AΓ'+ for affine types

A~n−1{displaystyle {tilde {A}}_{n-1}}{tilde {A}}_{n-1}

A~kn−1{displaystyle {tilde {A}}_{kn-1}}{tilde {A}}_{kn-1}
Locally trivial

Geometric folding Coxeter graphs affine.png

B~n{displaystyle {tilde {B}}_{n}}{tilde {B}}_{n}

D~2n+1{displaystyle {tilde {D}}_{2n+1}}{tilde {D}}_{2n+1}
(I,sn)

D~n+1{displaystyle {tilde {D}}_{n+1}}{tilde {D}}_{n+1}, D~2n{displaystyle {tilde {D}}_{2n}}{tilde {D}}_{2n}
(A3,±ε)

C~n{displaystyle {tilde {C}}_{n}}{tilde {C}}_{n}

B~n+1{displaystyle {tilde {B}}_{n+1}}{tilde {B}}_{n+1}, C~2n{displaystyle {tilde {C}}_{2n}}{tilde {C}}_{2n}
(A3,±ε)

C~2n+1{displaystyle {tilde {C}}_{2n+1}}{tilde {C}}_{2n+1}
(I,sn)

C~n{displaystyle {tilde {C}}_{n}}{tilde {C}}_{n}

A~2n+1{displaystyle {tilde {A}}_{2n+1}}{tilde {A}}_{2n+1}
(I,sn) & (I,s0)

A~2n{displaystyle {tilde {A}}_{2n}}{tilde {A}}_{2n}
(A3,ε) & (I,s0)

A~2n−1{displaystyle {tilde {A}}_{2n-1}}{tilde {A}}_{2n-1}
(A3,ε) & (A3,ε')

C~n{displaystyle {tilde {C}}_{n}}{tilde {C}}_{n}

D~n+2{displaystyle {tilde {D}}_{n+2}}{tilde {D}}_{n+2}
(A3,-ε) & (A3,-ε')

C~2{displaystyle {tilde {C}}_{2}}{tilde {C}}_{2}

D~5{displaystyle {tilde {D}}_{5}}{tilde {D}}_{5}
(I,s1)

F~4{displaystyle {tilde {F}}_{4}}{tilde {F}}_{4}

E~6{displaystyle {tilde {E}}_{6}}{tilde {E}}_{6}, E~7{displaystyle {tilde {E}}_{7}}{tilde {E}}_{7}
(A3,±ε)

G~2{displaystyle {tilde {G}}_{2}}{tilde {G}}_{2}

D~6{displaystyle {tilde {D}}_{6}}{tilde {D}}_{6}, E~7{displaystyle {tilde {E}}_{7}}{tilde {E}}_{7}
(A5,±ε)

B~3{displaystyle {tilde {B}}_{3}}{tilde {B}}_{3}, F~4{displaystyle {tilde {F}}_{4}}{tilde {F}}_{4}
(B3,±ε)

D~4{displaystyle {tilde {D}}_{4}}{tilde {D}}_{4}, E~6{displaystyle {tilde {E}}_{6}}{tilde {E}}_{6}
(D4,±ε)


A (simply-laced) Coxeter–Dynkin diagram (finite, affine, or hyperbolic) that has a symmetry (satisfying one condition, below) can be quotiented by the symmetry, yielding a new, generally multiply laced diagram, with the process called "folding".[29][30]


For example, in D4 folding to G2, the edge in G2 points from the class of the 3 outer nodes (valence 1), to the class of the central node (valence 3). And E8 folds into 2 copies of H4, the second copy scaled by τ.[31]


Geometrically this corresponds to orthogonal projections of uniform polytopes and tessellations. Notably, any finite simply-laced Coxeter–Dynkin diagram can be folded to I2(h), where h is the Coxeter number, which corresponds geometrically to a projection to the Coxeter plane.



Geometric folding Coxeter graphs hyperbolic.png
A few hyperbolic foldings



Complex reflections


Coxeter–Dynkin diagrams have been extended to complex space, Cn where nodes are unitary reflections of period greater than 2. Nodes are labeled by an index, assumed to be 2 for ordinary real reflection if suppressed. Coxeter writes the complex group, p[q]r, as diagram CDel pnode.pngCDel 3.pngCDel q.pngCDel 3.pngCDel rnode.png.[32]


A 1-dimensional regular complex polytope in C1{displaystyle mathbb {C} ^{1}}mathbb{C}^1 is represented as CDel pnode 1.png, having p vertices. Its real representation is a regular polygon, {p}. Its symmetry is p or CDel pnode.png, order p. A unitary operator generator for CDel pnode.png is seen as a rotation in R2{displaystyle mathbb {R} ^{2}}mathbb {R} ^{2} by 2π/p radians counter clockwise, and a CDel pnode 1.png edge is created by sequential applications of a single unitary reflection. A unitary reflection generator for a 1-polytope with p vertices is ei/p = cos(2π/p) + i sin(2π/p). When p = 2, the generator is eπi = –1, the same as a point reflection in the real plane.


In a higher polytope, p{} or CDel pnode 1.png represents a p-edge element, with a 2-edge, {} or CDel node 1.png, representing an ordinary real edge between two vertices.





Regular complex 1-polytopes

Complex 1-topes as k-edges.png
Complex 1-polytopes, CDel pnode 1.png, represented in the Argand plane as regular polygons for p = 2, 3, 4, 5, and 6, with black vertices. The centroid of the p vertices is shown seen in red. The sides of the polygons represent one application of the symmetry generator, mapping each vertex to the next counterclockwise copy. These polygonal sides are not edge elements of the polytope, as a complex 1-polytope can have no edges (it often is a complex edge) and only contains vertex elements.





Rank2 shephard subgroups.png
12 irreducible Shephard groups with their subgroup index relations.[33] Subgroups index 2 relate by removing a real reflection:
p[2q]2 --> p[q]p, index 2.
p[4]q --> p[q]p, index q.

Rank2 shephard subgroups2 series.png
p[4]2 subgroups: p=2,3,4...
p[4]2 --> [p], index p
p[4]2 --> p×p, index 2

Aa regular complex polygons in C2{displaystyle mathbb {C} ^{2}}mathbb{C}^2, has the form p{q}r or Coxeter diagram CDel pnode 1.pngCDel 3.pngCDel q.pngCDel 3.pngCDel rnode.png. The symmetry group of a regular complex polygon CDel pnode.pngCDel 3.pngCDel q.pngCDel 3.pngCDel rnode.png is not called a Coxeter group, but instead a Shephard group, a type of Complex reflection group. The order of p[q]r is 8/q⋅(1/p+2/q+1/r−1)−2{displaystyle 8/qcdot (1/p+2/q+1/r-1)^{-2}}{displaystyle 8/qcdot (1/p+2/q+1/r-1)^{-2}}.[34]


The rank 2 Shephard groups are: 2[q]2, p[4]2, 3[3]3, 3[6]2, 3[4]3, 4[3]4, 3[8]2, 4[6]2, 4[4]3, 3[5]3, 5[3]5, 3[10]2, 5[6]2, and 5[4]3 or CDel node.pngCDel q.pngCDel node.png, CDel pnode.pngCDel 4.pngCDel node.png, CDel 3node.pngCDel 3.pngCDel 3node.png, CDel 3node.pngCDel 6.pngCDel node.png, CDel 3node.pngCDel 4.pngCDel 3node.png, CDel 4node.pngCDel 3.pngCDel 4node.png, CDel 3node.pngCDel 8.pngCDel node.png, CDel 4node.pngCDel 6.pngCDel node.png, CDel 4node.pngCDel 4.pngCDel 3node.png, CDel 3node.pngCDel 5.pngCDel 3node.png, CDel 5node.pngCDel 3.pngCDel 5node.png, CDel 3node.pngCDel 10.pngCDel node.png, CDel 5node.pngCDel 6.pngCDel node.png, CDel 5node.pngCDel 4.pngCDel 3node.png of order 2q, 2p2, 24, 48, 72, 96, 144, 192, 288, 360, 600, 1200, and 1800 respectively.


The symmetry group p1[q]p2 is represented by 2 generators R1, R2, where: R1p1 = R2p2 = I. If q is even, (R2R1)q/2 = (R1R2)q/2. If q is odd, (R2R1)(q-1)/2R2 = (R1R2)(q-1)/2R1. When q is odd, p1=p2.


The C3{displaystyle mathbb {C} ^{3}}mathbb {C} ^{3} group CDel node.pngCDel psplit1.pngCDel branch.png or [1 1 1]p is defined by 3 period 2 unitary reflections {R1, R2, R3}: R12 = R12 = R32 = (R1R2)3 = (R2R3)3 = (R3R1)3 = (R1R2R3R1)p = 1. The period p can be seen as a double rotation in real R4{displaystyle mathbb {R} ^{4}}mathbb {R} ^{4}.


A similar C3{displaystyle mathbb {C} ^{3}}mathbb {C} ^{3} group CDel node.pngCDel antipsplit1.pngCDel branch.png or [1 1 1](p) is defined by 3 period 2 unitary reflections {R1, R2, R3}: R12 = R12 = R32 = (R1R2)3 = (R2R3)3 = (R3R1)3 = (R1R2R3R2)p = 1.



See also



  • Coxeter group

  • Schwarz triangle

  • Goursat tetrahedron

  • Dynkin diagram


  • Uniform polytope

    • Wythoff symbol

    • Uniform polyhedron

    • List of uniform polyhedra

    • List of uniform planar tilings

    • Uniform 4-polytope

    • Convex uniform honeycomb

    • Convex uniform honeycombs in hyperbolic space




  • Wythoff construction and Wythoff symbol



References





  1. ^ Hall, Brian C. (2003), Lie Groups, Lie Algebras, and Representations: An Elementary Introduction, Springer, ISBN 978-0-387-40122-5.mw-parser-output cite.citation{font-style:inherit}.mw-parser-output .citation q{quotes:"""""""'""'"}.mw-parser-output .citation .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-maint{display:none;color:#33aa33;margin-left:0.3em}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}


  2. ^ Coxeter, Regular Polytopes, (3rd edition, 1973), Dover edition,
    ISBN 0-486-61480-8, Sec 7.7. page 133,
    Schläfli's Criterion



  3. ^ Lannér F., On complexes with transitive groups of automorphisms, Medd. Lunds Univ. Mat. Sem. [Comm. Sem. Math. Univ. Lund], 11 (1950), 1–71


  4. ^ Allcock, Daniel (11 July 2006). "Infinitely many hyperbolic Coxeter groups through dimension 19". Geometry & Topology. 10 (2): 737–758. arXiv:0903.0138. doi:10.2140/gt.2006.10.737.


  5. ^ The Geometry and Topology of Coxeter Groups, Michael W. Davis, 2008 p. 105 Table 6.2. Hyperbolic diagrams


  6. ^ "TAKEUCHI : Arithmetic triangle groups". Projecteuclid.org. Retrieved 2013-07-05.


  7. ^ Folke Lannér, On complexes with transitive groups of automorphisms, Comm. Sém., Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.] 11 (1950) [1]


  8. ^ Regular Honeycombs in hyperbolic space, Coxeter, 1954


  9. ^ ab Norman Johnson, Geometries and Transformations (2018), Chapter 13: Hyperbolic Coxeter groups, 13.6 Lorentzian lattices


  10. ^ J. L. Koszul, Lectures on hyperbolic Coxeter groups, University of Notre Dame (1967)


  11. ^ M. Chein, Recherche des graphes des matrices de Coxeter hyperboliques d’ordre ≤10, Rev. Française Informat. Recherche Opérationnelle 3 (1969), no. Ser. R-3, 3–16 (French). [2]


  12. ^ Subalgebras of hyperbolic Kay-Moody algebras, Figure 5.1, p.13


  13. ^ N.W. Johnson, R. Kellerhals, J.G. Ratcliffe,S.T. Tschantz, Commensurability classes of hyperbolic Coxeter groups H3: p130, H4: p137, H5: p 138. [3]


  14. ^ F. Esselmann, The classification of compact hyperbolic Coxeter d-polytopes with d+2 facets. Comment. Math. Helvetici 71 (1996), 229–242. [4]


  15. ^ I. M. Kaplinskaya, Discrete groups generated by reflections in the faces of simplicial prisms in Lobachevskian spaces. Math. Notes,15 (1974), 88–91. [5]


  16. ^ P. Tumarkin, Hyperbolic Coxeter n-polytopes with n+2 facets (2003)


  17. ^ Norman W. Johnson and Asia Ivic Weiss, Quadratic Integers and Coxeter Groups, Can. J. Math. Vol. 51 (6), 1999 pp. 1307–1336 [6]


  18. ^ [7] A Classification of Non-Compact Coxeter Polytopes with n+3 Facets and One Non-Simple Vertex


  19. ^ P. Tumarkin, Compact hyperbolic Coxeter (2004)


  20. ^ V. O. Bugaenko, Groups of automorphisms of unimodular hyperbolic quadratic forms over the ring Zh√5+12 i. Moscow Univ. Math. Bull. 39 (1984), 6-14.


  21. ^ Anna Felikson, Pavel Tumarkin, On compact hyperbolic Coxeter d-polytopes with d+4 facets, 2005 [8]


  22. ^ Random groups, diamonds and glass, Danny Calegari of the University of Chicago, June 25, 2014 at the Bill Thurston Legacy Conference


  23. ^ Coxeter groups and random groups, Danny Calegari, last revised 4 Apr 2015


  24. ^ George Maxwell, Sphere Packings and Hyperbolic Reflection Groups, JOURNAL OF ALGEBRA 79,78-97 (1982) [9]


  25. ^ Hao Chen, Jean-Philippe Labbé, Lorentzian Coxeter groups and Boyd-Maxwell ball packings, https://arxiv.org/abs/1310.8608


  26. ^ Kac-Moody Algebras in M-theory


  27. ^ Cartan–Gram determinants for the simple Lie groups, Wu, Alfred C. T, The American Institute of Physics, Nov 1982


  28. ^ John Crisp, 'Injective maps between Artin groups', in Down under group theory, Proceedings of the Special Year on Geometric Group Theory, (Australian National University, Canberra, Australia, 1996), Postscript Archived 2005-10-16 at the Wayback Machine, pp 13-14, and googlebook, Geometric group theory down under, p 131


  29. ^ Zuber, Jean-Bernard. "Generalized Dynkin diagrams and root systems and their folding": 28–30. CiteSeerX 10.1.1.54.3122.


  30. ^ Dechant, Pierre-Philippe; Boehm, Celine; Twarock, Reidun (2013). "Affine extensions of non-crystallographic Coxeter groups induced by projection". Journal of Mathematical Physics. 54 (9): 093508. arXiv:1110.5228. Bibcode:2013JMP....54i3508D. doi:10.1063/1.4820441.


  31. ^ The E8 Geometry from a Clifford Perspective Advances in Applied Clifford Algebras, March 2017, Volume 27, Issue 1, pp 397–421 Pierre-Philippe Dechant


  32. ^ Coxeter, Complex Regular Polytopes, second edition, (1991)


  33. ^ Coxeter, Complex Regular Polytopes, p. 177, Table III


  34. ^ Unitary Reflection Groups, p.87




Further reading



  • James E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge studies in advanced mathematics, 29 (1990)


  • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995,
    ISBN 978-0-471-01003-6 [10], Googlebooks [11]
    • (Paper 17) Coxeter, The Evolution of Coxeter-Dynkin diagrams, [Nieuw Archief voor Wiskunde 9 (1991) 233-248]



  • Coxeter, The Beauty of Geometry: Twelve Essays, Dover Publications, 1999,
    ISBN 978-0-486-40919-1 (Chapter 3: Wythoff's Construction for Uniform Polytopes)


  • Coxeter, Regular Polytopes (1963), Macmillian Company

    • Regular Polytopes, Third edition, (1973), Dover edition,
      ISBN 0-486-61480-8 (Chapter 5: The Kaleidoscope, and Section 11.3 Representation by graphs)


  • H.S.M. Coxeter and W. O. J. Moser. Generators and Relations for Discrete Groups 4th ed, Springer-Verlag. New York. 1980


  • Norman Johnson, Geometries and Transformations, Chapters 11,12,13, preprint 2011


  • N. W. Johnson, R. Kellerhals, J. G. Ratcliffe, S. T. Tschantz, The size of a hyperbolic Coxeter simplex, Transformation Groups 1999, Volume 4, Issue 4, pp 329–353 [12] [13]

  • Norman W. Johnson and Asia Ivic Weiss Quadratic Integers and Coxeter Groups PDF Can. J. Math. Vol. 51 (6), 1999 pp. 1307–1336



External links







  • Weisstein, Eric W. "Coxeter–Dynkin diagram". MathWorld.


  • October 1978 discussion on the history of the Coxeter diagrams by Coxeter and Dynkin in Toronto, Canada; Eugene Dynkin Collection of Mathematics Interviews, Cornell University Library.




Popular posts from this blog

Bressuire

Vorschmack

Quarantine