Spark - Scala Mapping the JSON file to dataset of case class without using all JSON attributes
I try to create the case class to be able to map each line of my JSON file, so create a RDD by the JSON file.
I need only some data in a JSON file to create a case class, but I have as error:
cannot resolve '`result`' due to data type mismatch: cannot cast ArrayType(StructType(StructField(hop,LongType,true), StructField(result,ArrayType(StructType(StructField(from,StringType,true), StructField(rtt,DoubleType,true), StructField(ttl,LongType,true)),true),true)),true) to ArrayType(StructType(StructField(hop,DecimalType(38,0),true), StructField(result,ArrayType(StructType(StructField(rtt,DoubleType,true)),true),true)),true);
a JSON line is like :
{"lts": 165, "size": 40, "from": "89.105.202.4", "dst_name": "192.5.5.241", "fw": 4790, "proto": "UDP", "af": 4, "msm_name": "Traceroute", "stored_timestamp": 1514768539, "prb_id": 4247, "result": [{"result": [{"rtt": 1.955, "ttl": 255, "from": "89.105.200.50", "size": 28}, {"rtt": 1.7, "ttl": 255, "from": "10.10.0.5", "size": 28}, {"rtt": 1.709, "ttl": 255, "from": "89.105.200.57", "size": 28}], "hop": 1}, {"result": [{"rtt": 7.543, "ttl": 254, "from": "185.147.12.31", "size": 28}, {"rtt": 3.103, "ttl": 254, "from": "185.147.12.31", "size": 28}, {"rtt": 3.172, "ttl": 254, "from": "185.147.12.0", "size": 28}], "hop": 2}, {"result": [{"rtt": 4.347, "ttl": 253, "from": "185.147.12.19", "size": 28}, {"rtt": 2.876, "ttl": 253, "from": "185.147.12.19", "size": 28}, {"rtt": 3.143, "ttl": 253, "from": "185.147.12.19", "size": 28}], "hop": 3}, {"result": [{"rtt": 3.655, "ttl": 61, "from": "160.242.100.88", "size": 28}, {"rtt": 3.678, "ttl": 61, "from": "160.242.100.88", "size": 28}, {"rtt": 15.568, "ttl": 61, "from": "160.242.100.88", "size": 28}], "hop": 4}, {"result": [{"rtt": 4.263, "ttl": 60, "from": "196.216.48.144", "size": 28}, {"rtt": 6.082, "ttl": 60, "from": "196.216.48.144", "size": 28}, {"rtt": 11.834, "ttl": 60, "from": "196.216.48.144", "size": 28}], "hop": 5}, {"result": [{"rtt": 7.802, "ttl": 249, "from": "193.239.116.112", "size": 28}, {"rtt": 7.691, "ttl": 249, "from": "193.239.116.112", "size": 28}, {"rtt": 7.711, "ttl": 249, "from": "193.239.116.112", "size": 28}], "hop": 6}, {"result": [{"rtt": 8.228, "ttl": 57, "from": "192.5.5.241", "size": 28}, {"rtt": 8.026, "ttl": 57, "from": "192.5.5.241", "size": 28}, {"rtt": 8.254, "ttl": 57, "from": "192.5.5.241", "size": 28}], "hop": 7}], "timestamp": 1514768409, "src_addr": "89.105.202.4", "paris_id": 9, "endtime": 1514768403, "type": "traceroute", "dst_addr": "192.5.5.241", "msm_id": 5004}
my code is as bellow:
package tests
//imports
import org.apache.spark.SparkContext
import org.apache.spark.SparkConf
import org.apache.spark.SparkConf
import org.apache.spark.sql.SparkSession
object shell {
case class Hop(
hop: BigInt,
result: Seq[Signal])
case class Signal(
rtt: Double
)
case class Row(
af: String,
from: String,
size: String,
result: Seq[Hop]
)
def main(args: Array[String]): Unit = {
//create configuration
val conf = new SparkConf().setAppName("my first rdd app").setMaster("local")
//create spark context
val sc = new SparkContext(conf)
// find absolute path of json file
val pathToTraceroutesExamples = getClass.getResource("/test/rttAnalysis_sample_0.json")
//create spark session
val spark = SparkSession
.builder()
.config(conf)
.getOrCreate()
import spark.implicits._
//read json file
val logData = spark.read.json(pathToTraceroutesExamples.getPath)
// create a dataset of Row
val datasetLogdata = logData.select("af", "from", "size", "result").as[Row]
//count dataset elements
val count = datasetLogdata.rdd.count()
println(count)
}}
Question : How I can create an RDD containing a list of Row cas class and getting only important data (because an JSON object contains many unused data in my case)
json scala apache-spark
add a comment |
I try to create the case class to be able to map each line of my JSON file, so create a RDD by the JSON file.
I need only some data in a JSON file to create a case class, but I have as error:
cannot resolve '`result`' due to data type mismatch: cannot cast ArrayType(StructType(StructField(hop,LongType,true), StructField(result,ArrayType(StructType(StructField(from,StringType,true), StructField(rtt,DoubleType,true), StructField(ttl,LongType,true)),true),true)),true) to ArrayType(StructType(StructField(hop,DecimalType(38,0),true), StructField(result,ArrayType(StructType(StructField(rtt,DoubleType,true)),true),true)),true);
a JSON line is like :
{"lts": 165, "size": 40, "from": "89.105.202.4", "dst_name": "192.5.5.241", "fw": 4790, "proto": "UDP", "af": 4, "msm_name": "Traceroute", "stored_timestamp": 1514768539, "prb_id": 4247, "result": [{"result": [{"rtt": 1.955, "ttl": 255, "from": "89.105.200.50", "size": 28}, {"rtt": 1.7, "ttl": 255, "from": "10.10.0.5", "size": 28}, {"rtt": 1.709, "ttl": 255, "from": "89.105.200.57", "size": 28}], "hop": 1}, {"result": [{"rtt": 7.543, "ttl": 254, "from": "185.147.12.31", "size": 28}, {"rtt": 3.103, "ttl": 254, "from": "185.147.12.31", "size": 28}, {"rtt": 3.172, "ttl": 254, "from": "185.147.12.0", "size": 28}], "hop": 2}, {"result": [{"rtt": 4.347, "ttl": 253, "from": "185.147.12.19", "size": 28}, {"rtt": 2.876, "ttl": 253, "from": "185.147.12.19", "size": 28}, {"rtt": 3.143, "ttl": 253, "from": "185.147.12.19", "size": 28}], "hop": 3}, {"result": [{"rtt": 3.655, "ttl": 61, "from": "160.242.100.88", "size": 28}, {"rtt": 3.678, "ttl": 61, "from": "160.242.100.88", "size": 28}, {"rtt": 15.568, "ttl": 61, "from": "160.242.100.88", "size": 28}], "hop": 4}, {"result": [{"rtt": 4.263, "ttl": 60, "from": "196.216.48.144", "size": 28}, {"rtt": 6.082, "ttl": 60, "from": "196.216.48.144", "size": 28}, {"rtt": 11.834, "ttl": 60, "from": "196.216.48.144", "size": 28}], "hop": 5}, {"result": [{"rtt": 7.802, "ttl": 249, "from": "193.239.116.112", "size": 28}, {"rtt": 7.691, "ttl": 249, "from": "193.239.116.112", "size": 28}, {"rtt": 7.711, "ttl": 249, "from": "193.239.116.112", "size": 28}], "hop": 6}, {"result": [{"rtt": 8.228, "ttl": 57, "from": "192.5.5.241", "size": 28}, {"rtt": 8.026, "ttl": 57, "from": "192.5.5.241", "size": 28}, {"rtt": 8.254, "ttl": 57, "from": "192.5.5.241", "size": 28}], "hop": 7}], "timestamp": 1514768409, "src_addr": "89.105.202.4", "paris_id": 9, "endtime": 1514768403, "type": "traceroute", "dst_addr": "192.5.5.241", "msm_id": 5004}
my code is as bellow:
package tests
//imports
import org.apache.spark.SparkContext
import org.apache.spark.SparkConf
import org.apache.spark.SparkConf
import org.apache.spark.sql.SparkSession
object shell {
case class Hop(
hop: BigInt,
result: Seq[Signal])
case class Signal(
rtt: Double
)
case class Row(
af: String,
from: String,
size: String,
result: Seq[Hop]
)
def main(args: Array[String]): Unit = {
//create configuration
val conf = new SparkConf().setAppName("my first rdd app").setMaster("local")
//create spark context
val sc = new SparkContext(conf)
// find absolute path of json file
val pathToTraceroutesExamples = getClass.getResource("/test/rttAnalysis_sample_0.json")
//create spark session
val spark = SparkSession
.builder()
.config(conf)
.getOrCreate()
import spark.implicits._
//read json file
val logData = spark.read.json(pathToTraceroutesExamples.getPath)
// create a dataset of Row
val datasetLogdata = logData.select("af", "from", "size", "result").as[Row]
//count dataset elements
val count = datasetLogdata.rdd.count()
println(count)
}}
Question : How I can create an RDD containing a list of Row cas class and getting only important data (because an JSON object contains many unused data in my case)
json scala apache-spark
add a comment |
I try to create the case class to be able to map each line of my JSON file, so create a RDD by the JSON file.
I need only some data in a JSON file to create a case class, but I have as error:
cannot resolve '`result`' due to data type mismatch: cannot cast ArrayType(StructType(StructField(hop,LongType,true), StructField(result,ArrayType(StructType(StructField(from,StringType,true), StructField(rtt,DoubleType,true), StructField(ttl,LongType,true)),true),true)),true) to ArrayType(StructType(StructField(hop,DecimalType(38,0),true), StructField(result,ArrayType(StructType(StructField(rtt,DoubleType,true)),true),true)),true);
a JSON line is like :
{"lts": 165, "size": 40, "from": "89.105.202.4", "dst_name": "192.5.5.241", "fw": 4790, "proto": "UDP", "af": 4, "msm_name": "Traceroute", "stored_timestamp": 1514768539, "prb_id": 4247, "result": [{"result": [{"rtt": 1.955, "ttl": 255, "from": "89.105.200.50", "size": 28}, {"rtt": 1.7, "ttl": 255, "from": "10.10.0.5", "size": 28}, {"rtt": 1.709, "ttl": 255, "from": "89.105.200.57", "size": 28}], "hop": 1}, {"result": [{"rtt": 7.543, "ttl": 254, "from": "185.147.12.31", "size": 28}, {"rtt": 3.103, "ttl": 254, "from": "185.147.12.31", "size": 28}, {"rtt": 3.172, "ttl": 254, "from": "185.147.12.0", "size": 28}], "hop": 2}, {"result": [{"rtt": 4.347, "ttl": 253, "from": "185.147.12.19", "size": 28}, {"rtt": 2.876, "ttl": 253, "from": "185.147.12.19", "size": 28}, {"rtt": 3.143, "ttl": 253, "from": "185.147.12.19", "size": 28}], "hop": 3}, {"result": [{"rtt": 3.655, "ttl": 61, "from": "160.242.100.88", "size": 28}, {"rtt": 3.678, "ttl": 61, "from": "160.242.100.88", "size": 28}, {"rtt": 15.568, "ttl": 61, "from": "160.242.100.88", "size": 28}], "hop": 4}, {"result": [{"rtt": 4.263, "ttl": 60, "from": "196.216.48.144", "size": 28}, {"rtt": 6.082, "ttl": 60, "from": "196.216.48.144", "size": 28}, {"rtt": 11.834, "ttl": 60, "from": "196.216.48.144", "size": 28}], "hop": 5}, {"result": [{"rtt": 7.802, "ttl": 249, "from": "193.239.116.112", "size": 28}, {"rtt": 7.691, "ttl": 249, "from": "193.239.116.112", "size": 28}, {"rtt": 7.711, "ttl": 249, "from": "193.239.116.112", "size": 28}], "hop": 6}, {"result": [{"rtt": 8.228, "ttl": 57, "from": "192.5.5.241", "size": 28}, {"rtt": 8.026, "ttl": 57, "from": "192.5.5.241", "size": 28}, {"rtt": 8.254, "ttl": 57, "from": "192.5.5.241", "size": 28}], "hop": 7}], "timestamp": 1514768409, "src_addr": "89.105.202.4", "paris_id": 9, "endtime": 1514768403, "type": "traceroute", "dst_addr": "192.5.5.241", "msm_id": 5004}
my code is as bellow:
package tests
//imports
import org.apache.spark.SparkContext
import org.apache.spark.SparkConf
import org.apache.spark.SparkConf
import org.apache.spark.sql.SparkSession
object shell {
case class Hop(
hop: BigInt,
result: Seq[Signal])
case class Signal(
rtt: Double
)
case class Row(
af: String,
from: String,
size: String,
result: Seq[Hop]
)
def main(args: Array[String]): Unit = {
//create configuration
val conf = new SparkConf().setAppName("my first rdd app").setMaster("local")
//create spark context
val sc = new SparkContext(conf)
// find absolute path of json file
val pathToTraceroutesExamples = getClass.getResource("/test/rttAnalysis_sample_0.json")
//create spark session
val spark = SparkSession
.builder()
.config(conf)
.getOrCreate()
import spark.implicits._
//read json file
val logData = spark.read.json(pathToTraceroutesExamples.getPath)
// create a dataset of Row
val datasetLogdata = logData.select("af", "from", "size", "result").as[Row]
//count dataset elements
val count = datasetLogdata.rdd.count()
println(count)
}}
Question : How I can create an RDD containing a list of Row cas class and getting only important data (because an JSON object contains many unused data in my case)
json scala apache-spark
I try to create the case class to be able to map each line of my JSON file, so create a RDD by the JSON file.
I need only some data in a JSON file to create a case class, but I have as error:
cannot resolve '`result`' due to data type mismatch: cannot cast ArrayType(StructType(StructField(hop,LongType,true), StructField(result,ArrayType(StructType(StructField(from,StringType,true), StructField(rtt,DoubleType,true), StructField(ttl,LongType,true)),true),true)),true) to ArrayType(StructType(StructField(hop,DecimalType(38,0),true), StructField(result,ArrayType(StructType(StructField(rtt,DoubleType,true)),true),true)),true);
a JSON line is like :
{"lts": 165, "size": 40, "from": "89.105.202.4", "dst_name": "192.5.5.241", "fw": 4790, "proto": "UDP", "af": 4, "msm_name": "Traceroute", "stored_timestamp": 1514768539, "prb_id": 4247, "result": [{"result": [{"rtt": 1.955, "ttl": 255, "from": "89.105.200.50", "size": 28}, {"rtt": 1.7, "ttl": 255, "from": "10.10.0.5", "size": 28}, {"rtt": 1.709, "ttl": 255, "from": "89.105.200.57", "size": 28}], "hop": 1}, {"result": [{"rtt": 7.543, "ttl": 254, "from": "185.147.12.31", "size": 28}, {"rtt": 3.103, "ttl": 254, "from": "185.147.12.31", "size": 28}, {"rtt": 3.172, "ttl": 254, "from": "185.147.12.0", "size": 28}], "hop": 2}, {"result": [{"rtt": 4.347, "ttl": 253, "from": "185.147.12.19", "size": 28}, {"rtt": 2.876, "ttl": 253, "from": "185.147.12.19", "size": 28}, {"rtt": 3.143, "ttl": 253, "from": "185.147.12.19", "size": 28}], "hop": 3}, {"result": [{"rtt": 3.655, "ttl": 61, "from": "160.242.100.88", "size": 28}, {"rtt": 3.678, "ttl": 61, "from": "160.242.100.88", "size": 28}, {"rtt": 15.568, "ttl": 61, "from": "160.242.100.88", "size": 28}], "hop": 4}, {"result": [{"rtt": 4.263, "ttl": 60, "from": "196.216.48.144", "size": 28}, {"rtt": 6.082, "ttl": 60, "from": "196.216.48.144", "size": 28}, {"rtt": 11.834, "ttl": 60, "from": "196.216.48.144", "size": 28}], "hop": 5}, {"result": [{"rtt": 7.802, "ttl": 249, "from": "193.239.116.112", "size": 28}, {"rtt": 7.691, "ttl": 249, "from": "193.239.116.112", "size": 28}, {"rtt": 7.711, "ttl": 249, "from": "193.239.116.112", "size": 28}], "hop": 6}, {"result": [{"rtt": 8.228, "ttl": 57, "from": "192.5.5.241", "size": 28}, {"rtt": 8.026, "ttl": 57, "from": "192.5.5.241", "size": 28}, {"rtt": 8.254, "ttl": 57, "from": "192.5.5.241", "size": 28}], "hop": 7}], "timestamp": 1514768409, "src_addr": "89.105.202.4", "paris_id": 9, "endtime": 1514768403, "type": "traceroute", "dst_addr": "192.5.5.241", "msm_id": 5004}
my code is as bellow:
package tests
//imports
import org.apache.spark.SparkContext
import org.apache.spark.SparkConf
import org.apache.spark.SparkConf
import org.apache.spark.sql.SparkSession
object shell {
case class Hop(
hop: BigInt,
result: Seq[Signal])
case class Signal(
rtt: Double
)
case class Row(
af: String,
from: String,
size: String,
result: Seq[Hop]
)
def main(args: Array[String]): Unit = {
//create configuration
val conf = new SparkConf().setAppName("my first rdd app").setMaster("local")
//create spark context
val sc = new SparkContext(conf)
// find absolute path of json file
val pathToTraceroutesExamples = getClass.getResource("/test/rttAnalysis_sample_0.json")
//create spark session
val spark = SparkSession
.builder()
.config(conf)
.getOrCreate()
import spark.implicits._
//read json file
val logData = spark.read.json(pathToTraceroutesExamples.getPath)
// create a dataset of Row
val datasetLogdata = logData.select("af", "from", "size", "result").as[Row]
//count dataset elements
val count = datasetLogdata.rdd.count()
println(count)
}}
Question : How I can create an RDD containing a list of Row cas class and getting only important data (because an JSON object contains many unused data in my case)
json scala apache-spark
json scala apache-spark
asked Nov 14 '18 at 13:43
samarasamara
12812
12812
add a comment |
add a comment |
0
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53301655%2fspark-scala-mapping-the-json-file-to-dataset-of-case-class-without-using-all-j%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
0
active
oldest
votes
0
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53301655%2fspark-scala-mapping-the-json-file-to-dataset-of-case-class-without-using-all-j%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown