Pandas Group then Shift Column and keep last row
I want to group column idx then shift column val and keep the last row with idx.
import pandas as pd
df = pd.DataFrame({'idx':['a','a','b','b'],
'val':['a1','a2','b1','b2']})
df
idx val
0 a a1
1 a a2
2 b b1
3 b b2
I tried df['val_shift'] = df.groupby('idx').val.shift(1)
idx val val_shift
0 a a1 NaN
1 a a2 a1
2 b b1 NaN
3 b b2 b1
But I want.
idx val
0 a NaN
1 a a1
2 a a2
3 b NaN
4 b b1
5 b b2
Are there any way to get this?
pandas dataframe
add a comment |
I want to group column idx then shift column val and keep the last row with idx.
import pandas as pd
df = pd.DataFrame({'idx':['a','a','b','b'],
'val':['a1','a2','b1','b2']})
df
idx val
0 a a1
1 a a2
2 b b1
3 b b2
I tried df['val_shift'] = df.groupby('idx').val.shift(1)
idx val val_shift
0 a a1 NaN
1 a a2 a1
2 b b1 NaN
3 b b2 b1
But I want.
idx val
0 a NaN
1 a a1
2 a a2
3 b NaN
4 b b1
5 b b2
Are there any way to get this?
pandas dataframe
add a comment |
I want to group column idx then shift column val and keep the last row with idx.
import pandas as pd
df = pd.DataFrame({'idx':['a','a','b','b'],
'val':['a1','a2','b1','b2']})
df
idx val
0 a a1
1 a a2
2 b b1
3 b b2
I tried df['val_shift'] = df.groupby('idx').val.shift(1)
idx val val_shift
0 a a1 NaN
1 a a2 a1
2 b b1 NaN
3 b b2 b1
But I want.
idx val
0 a NaN
1 a a1
2 a a2
3 b NaN
4 b b1
5 b b2
Are there any way to get this?
pandas dataframe
I want to group column idx then shift column val and keep the last row with idx.
import pandas as pd
df = pd.DataFrame({'idx':['a','a','b','b'],
'val':['a1','a2','b1','b2']})
df
idx val
0 a a1
1 a a2
2 b b1
3 b b2
I tried df['val_shift'] = df.groupby('idx').val.shift(1)
idx val val_shift
0 a a1 NaN
1 a a2 a1
2 b b1 NaN
3 b b2 b1
But I want.
idx val
0 a NaN
1 a a1
2 a a2
3 b NaN
4 b b1
5 b b2
Are there any way to get this?
pandas dataframe
pandas dataframe
asked Nov 12 at 13:29
yolox
438
438
add a comment |
add a comment |
3 Answers
3
active
oldest
votes
I believe you need concat
last rows extracted by drop_duplicates
with change index values for correct ordering first, because shift
always remove last value here:
df1 = df.drop_duplicates('idx', keep='last')
df1.index += .5
df = pd.concat([df, df1]).sort_index().reset_index(drop=True)
Alternative solution:
df = df.drop_duplicates('idx', keep='last').append(df).sort_index().reset_index(drop=True)
df['val_shift'] = df.groupby('idx').val.shift(1)
print (df)
idx val val_shift
0 a a1 NaN
1 a a2 a1
2 a a2 a2
3 b b1 NaN
4 b b2 b1
5 b b2 b2
If want remove val
after shift
use pop
with syntactic sugar - grouping by Series df['idx']
:
df['val_shift'] = df.pop('val').groupby(df['idx']).shift(1)
print (df)
idx val_shift
0 a NaN
1 a a1
2 a a2
3 b NaN
4 b b1
5 b b2
Thank for the good answer but I have some question. Does the last way give the fastest result? I can't test it with%timeit
.
– yolox
Nov 12 at 13:57
1
@yolox - tested too, you are right so necessary testing functions, give me some time.
– jezrael
Nov 12 at 14:04
1
Tested, second solution is faster.
– jezrael
Nov 12 at 14:08
Thank you so much!
– yolox
Nov 12 at 14:09
add a comment |
It looks to me like you're just shoving an empty dataframe infront of each group where only 'idx'
is populated.
pd.concat([
d[['idx']].head(1).append(d)
for _, d in df.groupby('idx')
], ignore_index=True)
idx val
0 a NaN
1 a a1
2 a a2
3 b NaN
4 b b1
5 b b2
Alternative
df[['idx']].drop_duplicates('idx').append(df).sort_values('idx').reset_index(drop=True)
add a comment |
Using concat
with tail
newdf=pd.concat([df,df.groupby('idx').tail(1)])
newdf=newdf.assign(val=newdf.groupby('idx').shift()).sort_index()
newdf
Out[885]:
idx val
0 a NaN
1 a a1
1 a a2
2 b NaN
3 b b1
3 b b2
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53263226%2fpandas-group-then-shift-column-and-keep-last-row%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
3 Answers
3
active
oldest
votes
3 Answers
3
active
oldest
votes
active
oldest
votes
active
oldest
votes
I believe you need concat
last rows extracted by drop_duplicates
with change index values for correct ordering first, because shift
always remove last value here:
df1 = df.drop_duplicates('idx', keep='last')
df1.index += .5
df = pd.concat([df, df1]).sort_index().reset_index(drop=True)
Alternative solution:
df = df.drop_duplicates('idx', keep='last').append(df).sort_index().reset_index(drop=True)
df['val_shift'] = df.groupby('idx').val.shift(1)
print (df)
idx val val_shift
0 a a1 NaN
1 a a2 a1
2 a a2 a2
3 b b1 NaN
4 b b2 b1
5 b b2 b2
If want remove val
after shift
use pop
with syntactic sugar - grouping by Series df['idx']
:
df['val_shift'] = df.pop('val').groupby(df['idx']).shift(1)
print (df)
idx val_shift
0 a NaN
1 a a1
2 a a2
3 b NaN
4 b b1
5 b b2
Thank for the good answer but I have some question. Does the last way give the fastest result? I can't test it with%timeit
.
– yolox
Nov 12 at 13:57
1
@yolox - tested too, you are right so necessary testing functions, give me some time.
– jezrael
Nov 12 at 14:04
1
Tested, second solution is faster.
– jezrael
Nov 12 at 14:08
Thank you so much!
– yolox
Nov 12 at 14:09
add a comment |
I believe you need concat
last rows extracted by drop_duplicates
with change index values for correct ordering first, because shift
always remove last value here:
df1 = df.drop_duplicates('idx', keep='last')
df1.index += .5
df = pd.concat([df, df1]).sort_index().reset_index(drop=True)
Alternative solution:
df = df.drop_duplicates('idx', keep='last').append(df).sort_index().reset_index(drop=True)
df['val_shift'] = df.groupby('idx').val.shift(1)
print (df)
idx val val_shift
0 a a1 NaN
1 a a2 a1
2 a a2 a2
3 b b1 NaN
4 b b2 b1
5 b b2 b2
If want remove val
after shift
use pop
with syntactic sugar - grouping by Series df['idx']
:
df['val_shift'] = df.pop('val').groupby(df['idx']).shift(1)
print (df)
idx val_shift
0 a NaN
1 a a1
2 a a2
3 b NaN
4 b b1
5 b b2
Thank for the good answer but I have some question. Does the last way give the fastest result? I can't test it with%timeit
.
– yolox
Nov 12 at 13:57
1
@yolox - tested too, you are right so necessary testing functions, give me some time.
– jezrael
Nov 12 at 14:04
1
Tested, second solution is faster.
– jezrael
Nov 12 at 14:08
Thank you so much!
– yolox
Nov 12 at 14:09
add a comment |
I believe you need concat
last rows extracted by drop_duplicates
with change index values for correct ordering first, because shift
always remove last value here:
df1 = df.drop_duplicates('idx', keep='last')
df1.index += .5
df = pd.concat([df, df1]).sort_index().reset_index(drop=True)
Alternative solution:
df = df.drop_duplicates('idx', keep='last').append(df).sort_index().reset_index(drop=True)
df['val_shift'] = df.groupby('idx').val.shift(1)
print (df)
idx val val_shift
0 a a1 NaN
1 a a2 a1
2 a a2 a2
3 b b1 NaN
4 b b2 b1
5 b b2 b2
If want remove val
after shift
use pop
with syntactic sugar - grouping by Series df['idx']
:
df['val_shift'] = df.pop('val').groupby(df['idx']).shift(1)
print (df)
idx val_shift
0 a NaN
1 a a1
2 a a2
3 b NaN
4 b b1
5 b b2
I believe you need concat
last rows extracted by drop_duplicates
with change index values for correct ordering first, because shift
always remove last value here:
df1 = df.drop_duplicates('idx', keep='last')
df1.index += .5
df = pd.concat([df, df1]).sort_index().reset_index(drop=True)
Alternative solution:
df = df.drop_duplicates('idx', keep='last').append(df).sort_index().reset_index(drop=True)
df['val_shift'] = df.groupby('idx').val.shift(1)
print (df)
idx val val_shift
0 a a1 NaN
1 a a2 a1
2 a a2 a2
3 b b1 NaN
4 b b2 b1
5 b b2 b2
If want remove val
after shift
use pop
with syntactic sugar - grouping by Series df['idx']
:
df['val_shift'] = df.pop('val').groupby(df['idx']).shift(1)
print (df)
idx val_shift
0 a NaN
1 a a1
2 a a2
3 b NaN
4 b b1
5 b b2
edited Nov 12 at 13:46
answered Nov 12 at 13:35
jezrael
318k22258336
318k22258336
Thank for the good answer but I have some question. Does the last way give the fastest result? I can't test it with%timeit
.
– yolox
Nov 12 at 13:57
1
@yolox - tested too, you are right so necessary testing functions, give me some time.
– jezrael
Nov 12 at 14:04
1
Tested, second solution is faster.
– jezrael
Nov 12 at 14:08
Thank you so much!
– yolox
Nov 12 at 14:09
add a comment |
Thank for the good answer but I have some question. Does the last way give the fastest result? I can't test it with%timeit
.
– yolox
Nov 12 at 13:57
1
@yolox - tested too, you are right so necessary testing functions, give me some time.
– jezrael
Nov 12 at 14:04
1
Tested, second solution is faster.
– jezrael
Nov 12 at 14:08
Thank you so much!
– yolox
Nov 12 at 14:09
Thank for the good answer but I have some question. Does the last way give the fastest result? I can't test it with
%timeit
.– yolox
Nov 12 at 13:57
Thank for the good answer but I have some question. Does the last way give the fastest result? I can't test it with
%timeit
.– yolox
Nov 12 at 13:57
1
1
@yolox - tested too, you are right so necessary testing functions, give me some time.
– jezrael
Nov 12 at 14:04
@yolox - tested too, you are right so necessary testing functions, give me some time.
– jezrael
Nov 12 at 14:04
1
1
Tested, second solution is faster.
– jezrael
Nov 12 at 14:08
Tested, second solution is faster.
– jezrael
Nov 12 at 14:08
Thank you so much!
– yolox
Nov 12 at 14:09
Thank you so much!
– yolox
Nov 12 at 14:09
add a comment |
It looks to me like you're just shoving an empty dataframe infront of each group where only 'idx'
is populated.
pd.concat([
d[['idx']].head(1).append(d)
for _, d in df.groupby('idx')
], ignore_index=True)
idx val
0 a NaN
1 a a1
2 a a2
3 b NaN
4 b b1
5 b b2
Alternative
df[['idx']].drop_duplicates('idx').append(df).sort_values('idx').reset_index(drop=True)
add a comment |
It looks to me like you're just shoving an empty dataframe infront of each group where only 'idx'
is populated.
pd.concat([
d[['idx']].head(1).append(d)
for _, d in df.groupby('idx')
], ignore_index=True)
idx val
0 a NaN
1 a a1
2 a a2
3 b NaN
4 b b1
5 b b2
Alternative
df[['idx']].drop_duplicates('idx').append(df).sort_values('idx').reset_index(drop=True)
add a comment |
It looks to me like you're just shoving an empty dataframe infront of each group where only 'idx'
is populated.
pd.concat([
d[['idx']].head(1).append(d)
for _, d in df.groupby('idx')
], ignore_index=True)
idx val
0 a NaN
1 a a1
2 a a2
3 b NaN
4 b b1
5 b b2
Alternative
df[['idx']].drop_duplicates('idx').append(df).sort_values('idx').reset_index(drop=True)
It looks to me like you're just shoving an empty dataframe infront of each group where only 'idx'
is populated.
pd.concat([
d[['idx']].head(1).append(d)
for _, d in df.groupby('idx')
], ignore_index=True)
idx val
0 a NaN
1 a a1
2 a a2
3 b NaN
4 b b1
5 b b2
Alternative
df[['idx']].drop_duplicates('idx').append(df).sort_values('idx').reset_index(drop=True)
edited Nov 12 at 13:42
answered Nov 12 at 13:37
piRSquared
151k22142284
151k22142284
add a comment |
add a comment |
Using concat
with tail
newdf=pd.concat([df,df.groupby('idx').tail(1)])
newdf=newdf.assign(val=newdf.groupby('idx').shift()).sort_index()
newdf
Out[885]:
idx val
0 a NaN
1 a a1
1 a a2
2 b NaN
3 b b1
3 b b2
add a comment |
Using concat
with tail
newdf=pd.concat([df,df.groupby('idx').tail(1)])
newdf=newdf.assign(val=newdf.groupby('idx').shift()).sort_index()
newdf
Out[885]:
idx val
0 a NaN
1 a a1
1 a a2
2 b NaN
3 b b1
3 b b2
add a comment |
Using concat
with tail
newdf=pd.concat([df,df.groupby('idx').tail(1)])
newdf=newdf.assign(val=newdf.groupby('idx').shift()).sort_index()
newdf
Out[885]:
idx val
0 a NaN
1 a a1
1 a a2
2 b NaN
3 b b1
3 b b2
Using concat
with tail
newdf=pd.concat([df,df.groupby('idx').tail(1)])
newdf=newdf.assign(val=newdf.groupby('idx').shift()).sort_index()
newdf
Out[885]:
idx val
0 a NaN
1 a a1
1 a a2
2 b NaN
3 b b1
3 b b2
answered Nov 12 at 13:59
W-B
99.5k73163
99.5k73163
add a comment |
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53263226%2fpandas-group-then-shift-column-and-keep-last-row%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown