Pandas: dataframe transformation using pivot











up vote
0
down vote

favorite












I have a data frame in the below format:



Date        Id       A         B         C          D        E
2018-01-28 5937.0 11.000000 11.000000 10.000000 10.000000 10.000000

2018-01-21 5937.0 10.000000 10.000000 10.000000 10.000000 10.000000


I want to change the data into the below format:



             Id       2018-01-28         2018-01-21
A 5937.0 11.000000 10.000000
B 5937.0 11.000000 10.000000
C 5937.0 10.000000 10.000000
D 5937.0 10.000000 10.000000
E 5937.0 10.000000 10.000000


What is the best method to carry out following transformation. I have been using pivot but its not working(I am not very good with pivot)










share|improve this question






















  • You can check this stackoverflow.com/questions/41861846/…. It can help.
    – Rishi Bansal
    Nov 12 at 9:17















up vote
0
down vote

favorite












I have a data frame in the below format:



Date        Id       A         B         C          D        E
2018-01-28 5937.0 11.000000 11.000000 10.000000 10.000000 10.000000

2018-01-21 5937.0 10.000000 10.000000 10.000000 10.000000 10.000000


I want to change the data into the below format:



             Id       2018-01-28         2018-01-21
A 5937.0 11.000000 10.000000
B 5937.0 11.000000 10.000000
C 5937.0 10.000000 10.000000
D 5937.0 10.000000 10.000000
E 5937.0 10.000000 10.000000


What is the best method to carry out following transformation. I have been using pivot but its not working(I am not very good with pivot)










share|improve this question






















  • You can check this stackoverflow.com/questions/41861846/…. It can help.
    – Rishi Bansal
    Nov 12 at 9:17













up vote
0
down vote

favorite









up vote
0
down vote

favorite











I have a data frame in the below format:



Date        Id       A         B         C          D        E
2018-01-28 5937.0 11.000000 11.000000 10.000000 10.000000 10.000000

2018-01-21 5937.0 10.000000 10.000000 10.000000 10.000000 10.000000


I want to change the data into the below format:



             Id       2018-01-28         2018-01-21
A 5937.0 11.000000 10.000000
B 5937.0 11.000000 10.000000
C 5937.0 10.000000 10.000000
D 5937.0 10.000000 10.000000
E 5937.0 10.000000 10.000000


What is the best method to carry out following transformation. I have been using pivot but its not working(I am not very good with pivot)










share|improve this question













I have a data frame in the below format:



Date        Id       A         B         C          D        E
2018-01-28 5937.0 11.000000 11.000000 10.000000 10.000000 10.000000

2018-01-21 5937.0 10.000000 10.000000 10.000000 10.000000 10.000000


I want to change the data into the below format:



             Id       2018-01-28         2018-01-21
A 5937.0 11.000000 10.000000
B 5937.0 11.000000 10.000000
C 5937.0 10.000000 10.000000
D 5937.0 10.000000 10.000000
E 5937.0 10.000000 10.000000


What is the best method to carry out following transformation. I have been using pivot but its not working(I am not very good with pivot)







python pandas pivot transformation






share|improve this question













share|improve this question











share|improve this question




share|improve this question










asked Nov 12 at 8:57









apoorv parmar

317




317












  • You can check this stackoverflow.com/questions/41861846/…. It can help.
    – Rishi Bansal
    Nov 12 at 9:17


















  • You can check this stackoverflow.com/questions/41861846/…. It can help.
    – Rishi Bansal
    Nov 12 at 9:17
















You can check this stackoverflow.com/questions/41861846/…. It can help.
– Rishi Bansal
Nov 12 at 9:17




You can check this stackoverflow.com/questions/41861846/…. It can help.
– Rishi Bansal
Nov 12 at 9:17












3 Answers
3






active

oldest

votes

















up vote
2
down vote



accepted










Use set_index followed by stack and unstack with reset_index:



df1 = df.set_index(['Date','Id']).stack().unstack(0).reset_index(0)

print(df1)
Date Id 2018-01-21 2018-01-28
A 5937.0 10.0 11.0
B 5937.0 10.0 11.0
C 5937.0 10.0 10.0
D 5937.0 10.0 10.0
E 5937.0 10.0 10.0




df1=df.set_index(['Date','Id']).stack().unstack(0).reset_index(0).rename_axis(None,1)

print(df1)
Id 2018-01-21 2018-01-28
A 5937.0 10.0 11.0
B 5937.0 10.0 11.0
C 5937.0 10.0 10.0
D 5937.0 10.0 10.0
E 5937.0 10.0 10.0





share|improve this answer






























    up vote
    1
    down vote













    I would do this using melt and pivot_table:



    (df.melt(['Date', 'Id'])
    .pivot_table(index=['variable', 'Id'], columns='Date', values='value')
    .reset_index())


    Date variable Id 2018-01-21 2018-01-28
    0 A 5937.0 10.0 11.0
    1 B 5937.0 10.0 11.0
    2 C 5937.0 10.0 10.0
    3 D 5937.0 10.0 10.0
    4 E 5937.0 10.0 10.0





    share|improve this answer




























      up vote
      1
      down vote













      Using pivot:



      (df.pivot_table(values=["A", "B", "C", "D", "E"], columns=["Id", "Date"])
      .unstack()
      .reset_index(1) # Multi-index level 1 = Id
      .rename_axis(None, 1)) # Set columns name to None (not Date)


      Output:



      Date      Id  2018-01-21  2018-01-28
      A 5937.0 10.0 11.0
      B 5937.0 10.0 11.0
      C 5937.0 10.0 10.0
      D 5937.0 10.0 10.0
      E 5937.0 10.0 10.0





      share|improve this answer





















        Your Answer






        StackExchange.ifUsing("editor", function () {
        StackExchange.using("externalEditor", function () {
        StackExchange.using("snippets", function () {
        StackExchange.snippets.init();
        });
        });
        }, "code-snippets");

        StackExchange.ready(function() {
        var channelOptions = {
        tags: "".split(" "),
        id: "1"
        };
        initTagRenderer("".split(" "), "".split(" "), channelOptions);

        StackExchange.using("externalEditor", function() {
        // Have to fire editor after snippets, if snippets enabled
        if (StackExchange.settings.snippets.snippetsEnabled) {
        StackExchange.using("snippets", function() {
        createEditor();
        });
        }
        else {
        createEditor();
        }
        });

        function createEditor() {
        StackExchange.prepareEditor({
        heartbeatType: 'answer',
        convertImagesToLinks: true,
        noModals: true,
        showLowRepImageUploadWarning: true,
        reputationToPostImages: 10,
        bindNavPrevention: true,
        postfix: "",
        imageUploader: {
        brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
        contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
        allowUrls: true
        },
        onDemand: true,
        discardSelector: ".discard-answer"
        ,immediatelyShowMarkdownHelp:true
        });


        }
        });














        draft saved

        draft discarded


















        StackExchange.ready(
        function () {
        StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53258706%2fpandas-dataframe-transformation-using-pivot%23new-answer', 'question_page');
        }
        );

        Post as a guest















        Required, but never shown

























        3 Answers
        3






        active

        oldest

        votes








        3 Answers
        3






        active

        oldest

        votes









        active

        oldest

        votes






        active

        oldest

        votes








        up vote
        2
        down vote



        accepted










        Use set_index followed by stack and unstack with reset_index:



        df1 = df.set_index(['Date','Id']).stack().unstack(0).reset_index(0)

        print(df1)
        Date Id 2018-01-21 2018-01-28
        A 5937.0 10.0 11.0
        B 5937.0 10.0 11.0
        C 5937.0 10.0 10.0
        D 5937.0 10.0 10.0
        E 5937.0 10.0 10.0




        df1=df.set_index(['Date','Id']).stack().unstack(0).reset_index(0).rename_axis(None,1)

        print(df1)
        Id 2018-01-21 2018-01-28
        A 5937.0 10.0 11.0
        B 5937.0 10.0 11.0
        C 5937.0 10.0 10.0
        D 5937.0 10.0 10.0
        E 5937.0 10.0 10.0





        share|improve this answer



























          up vote
          2
          down vote



          accepted










          Use set_index followed by stack and unstack with reset_index:



          df1 = df.set_index(['Date','Id']).stack().unstack(0).reset_index(0)

          print(df1)
          Date Id 2018-01-21 2018-01-28
          A 5937.0 10.0 11.0
          B 5937.0 10.0 11.0
          C 5937.0 10.0 10.0
          D 5937.0 10.0 10.0
          E 5937.0 10.0 10.0




          df1=df.set_index(['Date','Id']).stack().unstack(0).reset_index(0).rename_axis(None,1)

          print(df1)
          Id 2018-01-21 2018-01-28
          A 5937.0 10.0 11.0
          B 5937.0 10.0 11.0
          C 5937.0 10.0 10.0
          D 5937.0 10.0 10.0
          E 5937.0 10.0 10.0





          share|improve this answer

























            up vote
            2
            down vote



            accepted







            up vote
            2
            down vote



            accepted






            Use set_index followed by stack and unstack with reset_index:



            df1 = df.set_index(['Date','Id']).stack().unstack(0).reset_index(0)

            print(df1)
            Date Id 2018-01-21 2018-01-28
            A 5937.0 10.0 11.0
            B 5937.0 10.0 11.0
            C 5937.0 10.0 10.0
            D 5937.0 10.0 10.0
            E 5937.0 10.0 10.0




            df1=df.set_index(['Date','Id']).stack().unstack(0).reset_index(0).rename_axis(None,1)

            print(df1)
            Id 2018-01-21 2018-01-28
            A 5937.0 10.0 11.0
            B 5937.0 10.0 11.0
            C 5937.0 10.0 10.0
            D 5937.0 10.0 10.0
            E 5937.0 10.0 10.0





            share|improve this answer














            Use set_index followed by stack and unstack with reset_index:



            df1 = df.set_index(['Date','Id']).stack().unstack(0).reset_index(0)

            print(df1)
            Date Id 2018-01-21 2018-01-28
            A 5937.0 10.0 11.0
            B 5937.0 10.0 11.0
            C 5937.0 10.0 10.0
            D 5937.0 10.0 10.0
            E 5937.0 10.0 10.0




            df1=df.set_index(['Date','Id']).stack().unstack(0).reset_index(0).rename_axis(None,1)

            print(df1)
            Id 2018-01-21 2018-01-28
            A 5937.0 10.0 11.0
            B 5937.0 10.0 11.0
            C 5937.0 10.0 10.0
            D 5937.0 10.0 10.0
            E 5937.0 10.0 10.0






            share|improve this answer














            share|improve this answer



            share|improve this answer








            edited Nov 12 at 9:47

























            answered Nov 12 at 9:33









            Sandeep Kadapa

            5,642427




            5,642427
























                up vote
                1
                down vote













                I would do this using melt and pivot_table:



                (df.melt(['Date', 'Id'])
                .pivot_table(index=['variable', 'Id'], columns='Date', values='value')
                .reset_index())


                Date variable Id 2018-01-21 2018-01-28
                0 A 5937.0 10.0 11.0
                1 B 5937.0 10.0 11.0
                2 C 5937.0 10.0 10.0
                3 D 5937.0 10.0 10.0
                4 E 5937.0 10.0 10.0





                share|improve this answer

























                  up vote
                  1
                  down vote













                  I would do this using melt and pivot_table:



                  (df.melt(['Date', 'Id'])
                  .pivot_table(index=['variable', 'Id'], columns='Date', values='value')
                  .reset_index())


                  Date variable Id 2018-01-21 2018-01-28
                  0 A 5937.0 10.0 11.0
                  1 B 5937.0 10.0 11.0
                  2 C 5937.0 10.0 10.0
                  3 D 5937.0 10.0 10.0
                  4 E 5937.0 10.0 10.0





                  share|improve this answer























                    up vote
                    1
                    down vote










                    up vote
                    1
                    down vote









                    I would do this using melt and pivot_table:



                    (df.melt(['Date', 'Id'])
                    .pivot_table(index=['variable', 'Id'], columns='Date', values='value')
                    .reset_index())


                    Date variable Id 2018-01-21 2018-01-28
                    0 A 5937.0 10.0 11.0
                    1 B 5937.0 10.0 11.0
                    2 C 5937.0 10.0 10.0
                    3 D 5937.0 10.0 10.0
                    4 E 5937.0 10.0 10.0





                    share|improve this answer












                    I would do this using melt and pivot_table:



                    (df.melt(['Date', 'Id'])
                    .pivot_table(index=['variable', 'Id'], columns='Date', values='value')
                    .reset_index())


                    Date variable Id 2018-01-21 2018-01-28
                    0 A 5937.0 10.0 11.0
                    1 B 5937.0 10.0 11.0
                    2 C 5937.0 10.0 10.0
                    3 D 5937.0 10.0 10.0
                    4 E 5937.0 10.0 10.0






                    share|improve this answer












                    share|improve this answer



                    share|improve this answer










                    answered Nov 12 at 9:41









                    coldspeed

                    115k18106185




                    115k18106185






















                        up vote
                        1
                        down vote













                        Using pivot:



                        (df.pivot_table(values=["A", "B", "C", "D", "E"], columns=["Id", "Date"])
                        .unstack()
                        .reset_index(1) # Multi-index level 1 = Id
                        .rename_axis(None, 1)) # Set columns name to None (not Date)


                        Output:



                        Date      Id  2018-01-21  2018-01-28
                        A 5937.0 10.0 11.0
                        B 5937.0 10.0 11.0
                        C 5937.0 10.0 10.0
                        D 5937.0 10.0 10.0
                        E 5937.0 10.0 10.0





                        share|improve this answer

























                          up vote
                          1
                          down vote













                          Using pivot:



                          (df.pivot_table(values=["A", "B", "C", "D", "E"], columns=["Id", "Date"])
                          .unstack()
                          .reset_index(1) # Multi-index level 1 = Id
                          .rename_axis(None, 1)) # Set columns name to None (not Date)


                          Output:



                          Date      Id  2018-01-21  2018-01-28
                          A 5937.0 10.0 11.0
                          B 5937.0 10.0 11.0
                          C 5937.0 10.0 10.0
                          D 5937.0 10.0 10.0
                          E 5937.0 10.0 10.0





                          share|improve this answer























                            up vote
                            1
                            down vote










                            up vote
                            1
                            down vote









                            Using pivot:



                            (df.pivot_table(values=["A", "B", "C", "D", "E"], columns=["Id", "Date"])
                            .unstack()
                            .reset_index(1) # Multi-index level 1 = Id
                            .rename_axis(None, 1)) # Set columns name to None (not Date)


                            Output:



                            Date      Id  2018-01-21  2018-01-28
                            A 5937.0 10.0 11.0
                            B 5937.0 10.0 11.0
                            C 5937.0 10.0 10.0
                            D 5937.0 10.0 10.0
                            E 5937.0 10.0 10.0





                            share|improve this answer












                            Using pivot:



                            (df.pivot_table(values=["A", "B", "C", "D", "E"], columns=["Id", "Date"])
                            .unstack()
                            .reset_index(1) # Multi-index level 1 = Id
                            .rename_axis(None, 1)) # Set columns name to None (not Date)


                            Output:



                            Date      Id  2018-01-21  2018-01-28
                            A 5937.0 10.0 11.0
                            B 5937.0 10.0 11.0
                            C 5937.0 10.0 10.0
                            D 5937.0 10.0 10.0
                            E 5937.0 10.0 10.0






                            share|improve this answer












                            share|improve this answer



                            share|improve this answer










                            answered Nov 12 at 9:58









                            Edgar R. Mondragón

                            1,4061619




                            1,4061619






























                                draft saved

                                draft discarded




















































                                Thanks for contributing an answer to Stack Overflow!


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid



                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.


                                To learn more, see our tips on writing great answers.





                                Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                                Please pay close attention to the following guidance:


                                • Please be sure to answer the question. Provide details and share your research!

                                But avoid



                                • Asking for help, clarification, or responding to other answers.

                                • Making statements based on opinion; back them up with references or personal experience.


                                To learn more, see our tips on writing great answers.




                                draft saved


                                draft discarded














                                StackExchange.ready(
                                function () {
                                StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53258706%2fpandas-dataframe-transformation-using-pivot%23new-answer', 'question_page');
                                }
                                );

                                Post as a guest















                                Required, but never shown





















































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown

































                                Required, but never shown














                                Required, but never shown












                                Required, but never shown







                                Required, but never shown







                                Popular posts from this blog

                                Bressuire

                                Vorschmack

                                Quarantine