RuntimeWarning: invalid value encountered in log
I become this expression:
RuntimeWarning: invalid value encountered in log
while trying this:
def fct(a, b, c, d):
global u1
global u2
if np.all(c > 0) and np.all(a > 0) and np.all(u1 != 0) and np.all(u2 != 0):
return a, c, u1, u2
u1, u2 = np.log(0.6*c), (math.e**d)**0.5
F = np.log(a**2) + 6*[math.e**(-b)]/u1 + 3/u2
print( F )
any idea??
python numpy logging
add a comment |
I become this expression:
RuntimeWarning: invalid value encountered in log
while trying this:
def fct(a, b, c, d):
global u1
global u2
if np.all(c > 0) and np.all(a > 0) and np.all(u1 != 0) and np.all(u2 != 0):
return a, c, u1, u2
u1, u2 = np.log(0.6*c), (math.e**d)**0.5
F = np.log(a**2) + 6*[math.e**(-b)]/u1 + 3/u2
print( F )
any idea??
python numpy logging
Specify the a,b,c,d parameters' values too, this function gave the message above, pls, to be able to help you
– Geeocode
Nov 14 '18 at 12:55
This conditionnp.all(c > 0) and np.all(a > 0) and np.all(u1 != 0) and np.all(u2 != 0)
is exactly the case where none of the operations after theif
block would fail. That means that, as the code is now, if you reach those operations at least one of them will fail. Maybe those should go within theif
block?
– jdehesa
Nov 14 '18 at 13:11
Please move your edit from answers to question deleting your answer and editing your question, as it is the common on the SO-n and I'm trying to prevent you from getting downvotes to your "answer".
– Geeocode
Nov 14 '18 at 14:06
add a comment |
I become this expression:
RuntimeWarning: invalid value encountered in log
while trying this:
def fct(a, b, c, d):
global u1
global u2
if np.all(c > 0) and np.all(a > 0) and np.all(u1 != 0) and np.all(u2 != 0):
return a, c, u1, u2
u1, u2 = np.log(0.6*c), (math.e**d)**0.5
F = np.log(a**2) + 6*[math.e**(-b)]/u1 + 3/u2
print( F )
any idea??
python numpy logging
I become this expression:
RuntimeWarning: invalid value encountered in log
while trying this:
def fct(a, b, c, d):
global u1
global u2
if np.all(c > 0) and np.all(a > 0) and np.all(u1 != 0) and np.all(u2 != 0):
return a, c, u1, u2
u1, u2 = np.log(0.6*c), (math.e**d)**0.5
F = np.log(a**2) + 6*[math.e**(-b)]/u1 + 3/u2
print( F )
any idea??
python numpy logging
python numpy logging
edited Nov 14 '18 at 13:09
Carlos Gonzalez
429511
429511
asked Nov 14 '18 at 12:39
PlopPlop
104
104
Specify the a,b,c,d parameters' values too, this function gave the message above, pls, to be able to help you
– Geeocode
Nov 14 '18 at 12:55
This conditionnp.all(c > 0) and np.all(a > 0) and np.all(u1 != 0) and np.all(u2 != 0)
is exactly the case where none of the operations after theif
block would fail. That means that, as the code is now, if you reach those operations at least one of them will fail. Maybe those should go within theif
block?
– jdehesa
Nov 14 '18 at 13:11
Please move your edit from answers to question deleting your answer and editing your question, as it is the common on the SO-n and I'm trying to prevent you from getting downvotes to your "answer".
– Geeocode
Nov 14 '18 at 14:06
add a comment |
Specify the a,b,c,d parameters' values too, this function gave the message above, pls, to be able to help you
– Geeocode
Nov 14 '18 at 12:55
This conditionnp.all(c > 0) and np.all(a > 0) and np.all(u1 != 0) and np.all(u2 != 0)
is exactly the case where none of the operations after theif
block would fail. That means that, as the code is now, if you reach those operations at least one of them will fail. Maybe those should go within theif
block?
– jdehesa
Nov 14 '18 at 13:11
Please move your edit from answers to question deleting your answer and editing your question, as it is the common on the SO-n and I'm trying to prevent you from getting downvotes to your "answer".
– Geeocode
Nov 14 '18 at 14:06
Specify the a,b,c,d parameters' values too, this function gave the message above, pls, to be able to help you
– Geeocode
Nov 14 '18 at 12:55
Specify the a,b,c,d parameters' values too, this function gave the message above, pls, to be able to help you
– Geeocode
Nov 14 '18 at 12:55
This condition
np.all(c > 0) and np.all(a > 0) and np.all(u1 != 0) and np.all(u2 != 0)
is exactly the case where none of the operations after the if
block would fail. That means that, as the code is now, if you reach those operations at least one of them will fail. Maybe those should go within the if
block?– jdehesa
Nov 14 '18 at 13:11
This condition
np.all(c > 0) and np.all(a > 0) and np.all(u1 != 0) and np.all(u2 != 0)
is exactly the case where none of the operations after the if
block would fail. That means that, as the code is now, if you reach those operations at least one of them will fail. Maybe those should go within the if
block?– jdehesa
Nov 14 '18 at 13:11
Please move your edit from answers to question deleting your answer and editing your question, as it is the common on the SO-n and I'm trying to prevent you from getting downvotes to your "answer".
– Geeocode
Nov 14 '18 at 14:06
Please move your edit from answers to question deleting your answer and editing your question, as it is the common on the SO-n and I'm trying to prevent you from getting downvotes to your "answer".
– Geeocode
Nov 14 '18 at 14:06
add a comment |
1 Answer
1
active
oldest
votes
This error message can emerge at two expression your code contains:
np.log(0.6*c) and np.log(a**2)
in the for loop with:
np.random.normal()
you will get random numbers at this distribution, whose values will be negative numbers.
That's why np.log()
will drop up the error message:
RuntimeWarning: invalid value encountered in log
Example:
np.random.normal(10,4,100)
Out:
array([ 8.04664247, 14.4991884 , 10.89789303, 13.37593183, 3.29981902,
16.6316143 , 10.64138342, 4.0459445 , 10.49192082, -3.04538967!!!!!,
13.30443781, 4.13345961, 12.06508196, 10.4286879 , 7.39431349,
12.36789249, 9.20424736, 11.13161087, 12.15404482, 12.69897663,
9.43633904, 12.77818913, 9.02926639, 4.78638573, 13.13104605,
12.71197993, 6.1550897 , 7.18496505, 4.3160573 , 9.12631992,
8.52408627, 12.45941119, 5.34780934, 5.7023213 , 13.53096085,
12.1087058 , 3.65110834, 5.15466232, 8.78768562, 12.54764999,
15.12211713, 3.26481809, 9.8623701 , 15.88784306, 5.83355467,
5.32775214, 8.81188865, 13.21886467, 6.78984216, 8.67260897,
7.06100605, 13.75314668, 15.56562533, 10.33916552, 7.72745465,
11.27606127, 11.56813697, 7.03177164, 10.63155512, 11.67072579,
11.70855769, 10.78372397, 5.11327436, 15.61581808, 9.53446815,
11.21806808, 11.2235412 , 7.68339223, 12.71484256, 9.99613038,
13.51834424, 7.73615596, 8.75145457, 13.02222188, 6.76757021,
13.03580839, 10.67504642, 15.36110384, 15.66816384, -0.0952157 !!!!!!!! ,
2.23551198, 11.21584659, 4.37791786, 5.45895529, 15.44411348,
14.7077441 , 14.52080519, 3.70418827, 5.03132122, 5.24810117,
16.35309566, 7.08504246, 6.81224092, 14.69274684, 8.43257572,
12.87468578, 7.01621364, 7.62879265, 7.14646032, 20.16254855])
Stepping into your function inside of np.log()
c = np.array([ 8.04664247, 14.4991884 , 10.89789303, 13.37593183, 3.29981902,
16.6316143 , 10.64138342, 4.0459445 , 10.49192082, -3.04538967,
13.30443781, 4.13345961, 12.06508196, 10.4286879 , 7.39431349,
12.36789249, 9.20424736, 11.13161087, 12.15404482, 12.69897663,
9.43633904, 12.77818913, 9.02926639, 4.78638573, 13.13104605,
12.71197993, 6.1550897 , 7.18496505, 4.3160573 , 9.12631992,
8.52408627, 12.45941119, 5.34780934, 5.7023213 , 13.53096085,
12.1087058 , 3.65110834, 5.15466232, 8.78768562, 12.54764999,
15.12211713, 3.26481809, 9.8623701 , 15.88784306, 5.83355467,
5.32775214, 8.81188865, 13.21886467, 6.78984216, 8.67260897,
7.06100605, 13.75314668, 15.56562533, 10.33916552, 7.72745465,
11.27606127, 11.56813697, 7.03177164, 10.63155512, 11.67072579,
11.70855769, 10.78372397, 5.11327436, 15.61581808, 9.53446815,
11.21806808, 11.2235412 , 7.68339223, 12.71484256, 9.99613038,
13.51834424, 7.73615596, 8.75145457, 13.02222188, 6.76757021,
13.03580839, 10.67504642, 15.36110384, 15.66816384, -0.0952157 ,
2.23551198, 11.21584659, 4.37791786, 5.45895529, 15.44411348,
14.7077441 , 14.52080519, 3.70418827, 5.03132122, 5.24810117,
16.35309566, 7.08504246, 6.81224092, 14.69274684, 8.43257572,
12.87468578, 7.01621364, 7.62879265, 7.14646032, 20.16254855])
print(np.log(0.6*c))
Out:
[1.5744293 2.16326705 1.87774385 2.08263134 0.683042 2.30047974
1.85392487 0.8868894 1.83977989 nan!!!! 2.07727203 0.90828911
1.97948987 1.83373484 1.48988563 2.00427818 1.70883942 1.89896326
1.9868364 2.03069579 1.73374247 2.03691412 1.6896455 1.05494996
2.06415373 2.03171923 1.30645371 1.46116503 0.9515167 1.70033691
1.63207021 2.01165063 1.16586138 1.23004771 2.09415483 1.98309906
0.78420515 1.12907599 1.66252576 2.01870777 2.20533276 0.67237842
1.77790089 2.25472861 1.25280091 1.16210379 1.66527617 2.07081933
1.40460207 1.64934404 1.44376192 2.11044202 2.23423935 1.82511354
1.5339539 1.91185638 1.93742888 1.43961306 1.85300085 1.94625801
1.94949438 1.86721233 1.12101435 2.23745876 1.74408784 1.90670008
1.90718784 1.52823552 2.03194439 1.79137243 2.09322197 1.53507929
1.6583943 2.05583165 1.40131649 2.05687444 1.85708328 2.22101297
2.24080525 nan!!!!! 0.29364465 1.90650203 0.96574761 1.18643181
2.2264023 2.17754854 2.16475684 0.79863852 1.10485699 1.14704071
2.28359159 1.44716024 1.40789551 2.17652834 1.62127664 2.04443742
1.43739808 1.52110397 1.45579155 2.49300123]
/untitled0.py:37: RuntimeWarning: invalid value encountered in log
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53300465%2fruntimewarning-invalid-value-encountered-in-log%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
This error message can emerge at two expression your code contains:
np.log(0.6*c) and np.log(a**2)
in the for loop with:
np.random.normal()
you will get random numbers at this distribution, whose values will be negative numbers.
That's why np.log()
will drop up the error message:
RuntimeWarning: invalid value encountered in log
Example:
np.random.normal(10,4,100)
Out:
array([ 8.04664247, 14.4991884 , 10.89789303, 13.37593183, 3.29981902,
16.6316143 , 10.64138342, 4.0459445 , 10.49192082, -3.04538967!!!!!,
13.30443781, 4.13345961, 12.06508196, 10.4286879 , 7.39431349,
12.36789249, 9.20424736, 11.13161087, 12.15404482, 12.69897663,
9.43633904, 12.77818913, 9.02926639, 4.78638573, 13.13104605,
12.71197993, 6.1550897 , 7.18496505, 4.3160573 , 9.12631992,
8.52408627, 12.45941119, 5.34780934, 5.7023213 , 13.53096085,
12.1087058 , 3.65110834, 5.15466232, 8.78768562, 12.54764999,
15.12211713, 3.26481809, 9.8623701 , 15.88784306, 5.83355467,
5.32775214, 8.81188865, 13.21886467, 6.78984216, 8.67260897,
7.06100605, 13.75314668, 15.56562533, 10.33916552, 7.72745465,
11.27606127, 11.56813697, 7.03177164, 10.63155512, 11.67072579,
11.70855769, 10.78372397, 5.11327436, 15.61581808, 9.53446815,
11.21806808, 11.2235412 , 7.68339223, 12.71484256, 9.99613038,
13.51834424, 7.73615596, 8.75145457, 13.02222188, 6.76757021,
13.03580839, 10.67504642, 15.36110384, 15.66816384, -0.0952157 !!!!!!!! ,
2.23551198, 11.21584659, 4.37791786, 5.45895529, 15.44411348,
14.7077441 , 14.52080519, 3.70418827, 5.03132122, 5.24810117,
16.35309566, 7.08504246, 6.81224092, 14.69274684, 8.43257572,
12.87468578, 7.01621364, 7.62879265, 7.14646032, 20.16254855])
Stepping into your function inside of np.log()
c = np.array([ 8.04664247, 14.4991884 , 10.89789303, 13.37593183, 3.29981902,
16.6316143 , 10.64138342, 4.0459445 , 10.49192082, -3.04538967,
13.30443781, 4.13345961, 12.06508196, 10.4286879 , 7.39431349,
12.36789249, 9.20424736, 11.13161087, 12.15404482, 12.69897663,
9.43633904, 12.77818913, 9.02926639, 4.78638573, 13.13104605,
12.71197993, 6.1550897 , 7.18496505, 4.3160573 , 9.12631992,
8.52408627, 12.45941119, 5.34780934, 5.7023213 , 13.53096085,
12.1087058 , 3.65110834, 5.15466232, 8.78768562, 12.54764999,
15.12211713, 3.26481809, 9.8623701 , 15.88784306, 5.83355467,
5.32775214, 8.81188865, 13.21886467, 6.78984216, 8.67260897,
7.06100605, 13.75314668, 15.56562533, 10.33916552, 7.72745465,
11.27606127, 11.56813697, 7.03177164, 10.63155512, 11.67072579,
11.70855769, 10.78372397, 5.11327436, 15.61581808, 9.53446815,
11.21806808, 11.2235412 , 7.68339223, 12.71484256, 9.99613038,
13.51834424, 7.73615596, 8.75145457, 13.02222188, 6.76757021,
13.03580839, 10.67504642, 15.36110384, 15.66816384, -0.0952157 ,
2.23551198, 11.21584659, 4.37791786, 5.45895529, 15.44411348,
14.7077441 , 14.52080519, 3.70418827, 5.03132122, 5.24810117,
16.35309566, 7.08504246, 6.81224092, 14.69274684, 8.43257572,
12.87468578, 7.01621364, 7.62879265, 7.14646032, 20.16254855])
print(np.log(0.6*c))
Out:
[1.5744293 2.16326705 1.87774385 2.08263134 0.683042 2.30047974
1.85392487 0.8868894 1.83977989 nan!!!! 2.07727203 0.90828911
1.97948987 1.83373484 1.48988563 2.00427818 1.70883942 1.89896326
1.9868364 2.03069579 1.73374247 2.03691412 1.6896455 1.05494996
2.06415373 2.03171923 1.30645371 1.46116503 0.9515167 1.70033691
1.63207021 2.01165063 1.16586138 1.23004771 2.09415483 1.98309906
0.78420515 1.12907599 1.66252576 2.01870777 2.20533276 0.67237842
1.77790089 2.25472861 1.25280091 1.16210379 1.66527617 2.07081933
1.40460207 1.64934404 1.44376192 2.11044202 2.23423935 1.82511354
1.5339539 1.91185638 1.93742888 1.43961306 1.85300085 1.94625801
1.94949438 1.86721233 1.12101435 2.23745876 1.74408784 1.90670008
1.90718784 1.52823552 2.03194439 1.79137243 2.09322197 1.53507929
1.6583943 2.05583165 1.40131649 2.05687444 1.85708328 2.22101297
2.24080525 nan!!!!! 0.29364465 1.90650203 0.96574761 1.18643181
2.2264023 2.17754854 2.16475684 0.79863852 1.10485699 1.14704071
2.28359159 1.44716024 1.40789551 2.17652834 1.62127664 2.04443742
1.43739808 1.52110397 1.45579155 2.49300123]
/untitled0.py:37: RuntimeWarning: invalid value encountered in log
add a comment |
This error message can emerge at two expression your code contains:
np.log(0.6*c) and np.log(a**2)
in the for loop with:
np.random.normal()
you will get random numbers at this distribution, whose values will be negative numbers.
That's why np.log()
will drop up the error message:
RuntimeWarning: invalid value encountered in log
Example:
np.random.normal(10,4,100)
Out:
array([ 8.04664247, 14.4991884 , 10.89789303, 13.37593183, 3.29981902,
16.6316143 , 10.64138342, 4.0459445 , 10.49192082, -3.04538967!!!!!,
13.30443781, 4.13345961, 12.06508196, 10.4286879 , 7.39431349,
12.36789249, 9.20424736, 11.13161087, 12.15404482, 12.69897663,
9.43633904, 12.77818913, 9.02926639, 4.78638573, 13.13104605,
12.71197993, 6.1550897 , 7.18496505, 4.3160573 , 9.12631992,
8.52408627, 12.45941119, 5.34780934, 5.7023213 , 13.53096085,
12.1087058 , 3.65110834, 5.15466232, 8.78768562, 12.54764999,
15.12211713, 3.26481809, 9.8623701 , 15.88784306, 5.83355467,
5.32775214, 8.81188865, 13.21886467, 6.78984216, 8.67260897,
7.06100605, 13.75314668, 15.56562533, 10.33916552, 7.72745465,
11.27606127, 11.56813697, 7.03177164, 10.63155512, 11.67072579,
11.70855769, 10.78372397, 5.11327436, 15.61581808, 9.53446815,
11.21806808, 11.2235412 , 7.68339223, 12.71484256, 9.99613038,
13.51834424, 7.73615596, 8.75145457, 13.02222188, 6.76757021,
13.03580839, 10.67504642, 15.36110384, 15.66816384, -0.0952157 !!!!!!!! ,
2.23551198, 11.21584659, 4.37791786, 5.45895529, 15.44411348,
14.7077441 , 14.52080519, 3.70418827, 5.03132122, 5.24810117,
16.35309566, 7.08504246, 6.81224092, 14.69274684, 8.43257572,
12.87468578, 7.01621364, 7.62879265, 7.14646032, 20.16254855])
Stepping into your function inside of np.log()
c = np.array([ 8.04664247, 14.4991884 , 10.89789303, 13.37593183, 3.29981902,
16.6316143 , 10.64138342, 4.0459445 , 10.49192082, -3.04538967,
13.30443781, 4.13345961, 12.06508196, 10.4286879 , 7.39431349,
12.36789249, 9.20424736, 11.13161087, 12.15404482, 12.69897663,
9.43633904, 12.77818913, 9.02926639, 4.78638573, 13.13104605,
12.71197993, 6.1550897 , 7.18496505, 4.3160573 , 9.12631992,
8.52408627, 12.45941119, 5.34780934, 5.7023213 , 13.53096085,
12.1087058 , 3.65110834, 5.15466232, 8.78768562, 12.54764999,
15.12211713, 3.26481809, 9.8623701 , 15.88784306, 5.83355467,
5.32775214, 8.81188865, 13.21886467, 6.78984216, 8.67260897,
7.06100605, 13.75314668, 15.56562533, 10.33916552, 7.72745465,
11.27606127, 11.56813697, 7.03177164, 10.63155512, 11.67072579,
11.70855769, 10.78372397, 5.11327436, 15.61581808, 9.53446815,
11.21806808, 11.2235412 , 7.68339223, 12.71484256, 9.99613038,
13.51834424, 7.73615596, 8.75145457, 13.02222188, 6.76757021,
13.03580839, 10.67504642, 15.36110384, 15.66816384, -0.0952157 ,
2.23551198, 11.21584659, 4.37791786, 5.45895529, 15.44411348,
14.7077441 , 14.52080519, 3.70418827, 5.03132122, 5.24810117,
16.35309566, 7.08504246, 6.81224092, 14.69274684, 8.43257572,
12.87468578, 7.01621364, 7.62879265, 7.14646032, 20.16254855])
print(np.log(0.6*c))
Out:
[1.5744293 2.16326705 1.87774385 2.08263134 0.683042 2.30047974
1.85392487 0.8868894 1.83977989 nan!!!! 2.07727203 0.90828911
1.97948987 1.83373484 1.48988563 2.00427818 1.70883942 1.89896326
1.9868364 2.03069579 1.73374247 2.03691412 1.6896455 1.05494996
2.06415373 2.03171923 1.30645371 1.46116503 0.9515167 1.70033691
1.63207021 2.01165063 1.16586138 1.23004771 2.09415483 1.98309906
0.78420515 1.12907599 1.66252576 2.01870777 2.20533276 0.67237842
1.77790089 2.25472861 1.25280091 1.16210379 1.66527617 2.07081933
1.40460207 1.64934404 1.44376192 2.11044202 2.23423935 1.82511354
1.5339539 1.91185638 1.93742888 1.43961306 1.85300085 1.94625801
1.94949438 1.86721233 1.12101435 2.23745876 1.74408784 1.90670008
1.90718784 1.52823552 2.03194439 1.79137243 2.09322197 1.53507929
1.6583943 2.05583165 1.40131649 2.05687444 1.85708328 2.22101297
2.24080525 nan!!!!! 0.29364465 1.90650203 0.96574761 1.18643181
2.2264023 2.17754854 2.16475684 0.79863852 1.10485699 1.14704071
2.28359159 1.44716024 1.40789551 2.17652834 1.62127664 2.04443742
1.43739808 1.52110397 1.45579155 2.49300123]
/untitled0.py:37: RuntimeWarning: invalid value encountered in log
add a comment |
This error message can emerge at two expression your code contains:
np.log(0.6*c) and np.log(a**2)
in the for loop with:
np.random.normal()
you will get random numbers at this distribution, whose values will be negative numbers.
That's why np.log()
will drop up the error message:
RuntimeWarning: invalid value encountered in log
Example:
np.random.normal(10,4,100)
Out:
array([ 8.04664247, 14.4991884 , 10.89789303, 13.37593183, 3.29981902,
16.6316143 , 10.64138342, 4.0459445 , 10.49192082, -3.04538967!!!!!,
13.30443781, 4.13345961, 12.06508196, 10.4286879 , 7.39431349,
12.36789249, 9.20424736, 11.13161087, 12.15404482, 12.69897663,
9.43633904, 12.77818913, 9.02926639, 4.78638573, 13.13104605,
12.71197993, 6.1550897 , 7.18496505, 4.3160573 , 9.12631992,
8.52408627, 12.45941119, 5.34780934, 5.7023213 , 13.53096085,
12.1087058 , 3.65110834, 5.15466232, 8.78768562, 12.54764999,
15.12211713, 3.26481809, 9.8623701 , 15.88784306, 5.83355467,
5.32775214, 8.81188865, 13.21886467, 6.78984216, 8.67260897,
7.06100605, 13.75314668, 15.56562533, 10.33916552, 7.72745465,
11.27606127, 11.56813697, 7.03177164, 10.63155512, 11.67072579,
11.70855769, 10.78372397, 5.11327436, 15.61581808, 9.53446815,
11.21806808, 11.2235412 , 7.68339223, 12.71484256, 9.99613038,
13.51834424, 7.73615596, 8.75145457, 13.02222188, 6.76757021,
13.03580839, 10.67504642, 15.36110384, 15.66816384, -0.0952157 !!!!!!!! ,
2.23551198, 11.21584659, 4.37791786, 5.45895529, 15.44411348,
14.7077441 , 14.52080519, 3.70418827, 5.03132122, 5.24810117,
16.35309566, 7.08504246, 6.81224092, 14.69274684, 8.43257572,
12.87468578, 7.01621364, 7.62879265, 7.14646032, 20.16254855])
Stepping into your function inside of np.log()
c = np.array([ 8.04664247, 14.4991884 , 10.89789303, 13.37593183, 3.29981902,
16.6316143 , 10.64138342, 4.0459445 , 10.49192082, -3.04538967,
13.30443781, 4.13345961, 12.06508196, 10.4286879 , 7.39431349,
12.36789249, 9.20424736, 11.13161087, 12.15404482, 12.69897663,
9.43633904, 12.77818913, 9.02926639, 4.78638573, 13.13104605,
12.71197993, 6.1550897 , 7.18496505, 4.3160573 , 9.12631992,
8.52408627, 12.45941119, 5.34780934, 5.7023213 , 13.53096085,
12.1087058 , 3.65110834, 5.15466232, 8.78768562, 12.54764999,
15.12211713, 3.26481809, 9.8623701 , 15.88784306, 5.83355467,
5.32775214, 8.81188865, 13.21886467, 6.78984216, 8.67260897,
7.06100605, 13.75314668, 15.56562533, 10.33916552, 7.72745465,
11.27606127, 11.56813697, 7.03177164, 10.63155512, 11.67072579,
11.70855769, 10.78372397, 5.11327436, 15.61581808, 9.53446815,
11.21806808, 11.2235412 , 7.68339223, 12.71484256, 9.99613038,
13.51834424, 7.73615596, 8.75145457, 13.02222188, 6.76757021,
13.03580839, 10.67504642, 15.36110384, 15.66816384, -0.0952157 ,
2.23551198, 11.21584659, 4.37791786, 5.45895529, 15.44411348,
14.7077441 , 14.52080519, 3.70418827, 5.03132122, 5.24810117,
16.35309566, 7.08504246, 6.81224092, 14.69274684, 8.43257572,
12.87468578, 7.01621364, 7.62879265, 7.14646032, 20.16254855])
print(np.log(0.6*c))
Out:
[1.5744293 2.16326705 1.87774385 2.08263134 0.683042 2.30047974
1.85392487 0.8868894 1.83977989 nan!!!! 2.07727203 0.90828911
1.97948987 1.83373484 1.48988563 2.00427818 1.70883942 1.89896326
1.9868364 2.03069579 1.73374247 2.03691412 1.6896455 1.05494996
2.06415373 2.03171923 1.30645371 1.46116503 0.9515167 1.70033691
1.63207021 2.01165063 1.16586138 1.23004771 2.09415483 1.98309906
0.78420515 1.12907599 1.66252576 2.01870777 2.20533276 0.67237842
1.77790089 2.25472861 1.25280091 1.16210379 1.66527617 2.07081933
1.40460207 1.64934404 1.44376192 2.11044202 2.23423935 1.82511354
1.5339539 1.91185638 1.93742888 1.43961306 1.85300085 1.94625801
1.94949438 1.86721233 1.12101435 2.23745876 1.74408784 1.90670008
1.90718784 1.52823552 2.03194439 1.79137243 2.09322197 1.53507929
1.6583943 2.05583165 1.40131649 2.05687444 1.85708328 2.22101297
2.24080525 nan!!!!! 0.29364465 1.90650203 0.96574761 1.18643181
2.2264023 2.17754854 2.16475684 0.79863852 1.10485699 1.14704071
2.28359159 1.44716024 1.40789551 2.17652834 1.62127664 2.04443742
1.43739808 1.52110397 1.45579155 2.49300123]
/untitled0.py:37: RuntimeWarning: invalid value encountered in log
This error message can emerge at two expression your code contains:
np.log(0.6*c) and np.log(a**2)
in the for loop with:
np.random.normal()
you will get random numbers at this distribution, whose values will be negative numbers.
That's why np.log()
will drop up the error message:
RuntimeWarning: invalid value encountered in log
Example:
np.random.normal(10,4,100)
Out:
array([ 8.04664247, 14.4991884 , 10.89789303, 13.37593183, 3.29981902,
16.6316143 , 10.64138342, 4.0459445 , 10.49192082, -3.04538967!!!!!,
13.30443781, 4.13345961, 12.06508196, 10.4286879 , 7.39431349,
12.36789249, 9.20424736, 11.13161087, 12.15404482, 12.69897663,
9.43633904, 12.77818913, 9.02926639, 4.78638573, 13.13104605,
12.71197993, 6.1550897 , 7.18496505, 4.3160573 , 9.12631992,
8.52408627, 12.45941119, 5.34780934, 5.7023213 , 13.53096085,
12.1087058 , 3.65110834, 5.15466232, 8.78768562, 12.54764999,
15.12211713, 3.26481809, 9.8623701 , 15.88784306, 5.83355467,
5.32775214, 8.81188865, 13.21886467, 6.78984216, 8.67260897,
7.06100605, 13.75314668, 15.56562533, 10.33916552, 7.72745465,
11.27606127, 11.56813697, 7.03177164, 10.63155512, 11.67072579,
11.70855769, 10.78372397, 5.11327436, 15.61581808, 9.53446815,
11.21806808, 11.2235412 , 7.68339223, 12.71484256, 9.99613038,
13.51834424, 7.73615596, 8.75145457, 13.02222188, 6.76757021,
13.03580839, 10.67504642, 15.36110384, 15.66816384, -0.0952157 !!!!!!!! ,
2.23551198, 11.21584659, 4.37791786, 5.45895529, 15.44411348,
14.7077441 , 14.52080519, 3.70418827, 5.03132122, 5.24810117,
16.35309566, 7.08504246, 6.81224092, 14.69274684, 8.43257572,
12.87468578, 7.01621364, 7.62879265, 7.14646032, 20.16254855])
Stepping into your function inside of np.log()
c = np.array([ 8.04664247, 14.4991884 , 10.89789303, 13.37593183, 3.29981902,
16.6316143 , 10.64138342, 4.0459445 , 10.49192082, -3.04538967,
13.30443781, 4.13345961, 12.06508196, 10.4286879 , 7.39431349,
12.36789249, 9.20424736, 11.13161087, 12.15404482, 12.69897663,
9.43633904, 12.77818913, 9.02926639, 4.78638573, 13.13104605,
12.71197993, 6.1550897 , 7.18496505, 4.3160573 , 9.12631992,
8.52408627, 12.45941119, 5.34780934, 5.7023213 , 13.53096085,
12.1087058 , 3.65110834, 5.15466232, 8.78768562, 12.54764999,
15.12211713, 3.26481809, 9.8623701 , 15.88784306, 5.83355467,
5.32775214, 8.81188865, 13.21886467, 6.78984216, 8.67260897,
7.06100605, 13.75314668, 15.56562533, 10.33916552, 7.72745465,
11.27606127, 11.56813697, 7.03177164, 10.63155512, 11.67072579,
11.70855769, 10.78372397, 5.11327436, 15.61581808, 9.53446815,
11.21806808, 11.2235412 , 7.68339223, 12.71484256, 9.99613038,
13.51834424, 7.73615596, 8.75145457, 13.02222188, 6.76757021,
13.03580839, 10.67504642, 15.36110384, 15.66816384, -0.0952157 ,
2.23551198, 11.21584659, 4.37791786, 5.45895529, 15.44411348,
14.7077441 , 14.52080519, 3.70418827, 5.03132122, 5.24810117,
16.35309566, 7.08504246, 6.81224092, 14.69274684, 8.43257572,
12.87468578, 7.01621364, 7.62879265, 7.14646032, 20.16254855])
print(np.log(0.6*c))
Out:
[1.5744293 2.16326705 1.87774385 2.08263134 0.683042 2.30047974
1.85392487 0.8868894 1.83977989 nan!!!! 2.07727203 0.90828911
1.97948987 1.83373484 1.48988563 2.00427818 1.70883942 1.89896326
1.9868364 2.03069579 1.73374247 2.03691412 1.6896455 1.05494996
2.06415373 2.03171923 1.30645371 1.46116503 0.9515167 1.70033691
1.63207021 2.01165063 1.16586138 1.23004771 2.09415483 1.98309906
0.78420515 1.12907599 1.66252576 2.01870777 2.20533276 0.67237842
1.77790089 2.25472861 1.25280091 1.16210379 1.66527617 2.07081933
1.40460207 1.64934404 1.44376192 2.11044202 2.23423935 1.82511354
1.5339539 1.91185638 1.93742888 1.43961306 1.85300085 1.94625801
1.94949438 1.86721233 1.12101435 2.23745876 1.74408784 1.90670008
1.90718784 1.52823552 2.03194439 1.79137243 2.09322197 1.53507929
1.6583943 2.05583165 1.40131649 2.05687444 1.85708328 2.22101297
2.24080525 nan!!!!! 0.29364465 1.90650203 0.96574761 1.18643181
2.2264023 2.17754854 2.16475684 0.79863852 1.10485699 1.14704071
2.28359159 1.44716024 1.40789551 2.17652834 1.62127664 2.04443742
1.43739808 1.52110397 1.45579155 2.49300123]
/untitled0.py:37: RuntimeWarning: invalid value encountered in log
edited Nov 14 '18 at 14:17
answered Nov 14 '18 at 13:11
GeeocodeGeeocode
2,3181820
2,3181820
add a comment |
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53300465%2fruntimewarning-invalid-value-encountered-in-log%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Specify the a,b,c,d parameters' values too, this function gave the message above, pls, to be able to help you
– Geeocode
Nov 14 '18 at 12:55
This condition
np.all(c > 0) and np.all(a > 0) and np.all(u1 != 0) and np.all(u2 != 0)
is exactly the case where none of the operations after theif
block would fail. That means that, as the code is now, if you reach those operations at least one of them will fail. Maybe those should go within theif
block?– jdehesa
Nov 14 '18 at 13:11
Please move your edit from answers to question deleting your answer and editing your question, as it is the common on the SO-n and I'm trying to prevent you from getting downvotes to your "answer".
– Geeocode
Nov 14 '18 at 14:06