How to find Time complexity of Graph coloring using backtracking?
up vote
0
down vote
favorite
I have to find out the time complexity of graph coloring problem using backtracking. I have found somewhere it is O(n*m^n) where n=no vertex and m= number of color.
Suppose my code is given below how to find time complexity?
bool isSafe (int v, bool graph[V][V], int color, int c)
{
for (int i = 0; i < V; i++)
if (graph[v][i] && c == color[i])
return false;
return true;
}
bool graphColoringUtil(bool graph[V][V], int m, int color, int v)
{
if (v == V)
return true;
for (int c = 1; c <= m; c++)
{
if (isSafe(v, graph, color, c))
{
color[v] = c;
if (graphColoringUtil (graph, m, color, v+1) == true)
return true;
color[v] = 0;
}
}
return false;
}
bool graphColoring(bool graph[V][V], int m)
{
int *color = new int[V];
for (int i = 0; i < V; i++)
color[i] = 0;
if (graphColoringUtil(graph, m, color, 0) == false)
{
printf("Solution does not existn");
return false;
}
printSolution(color);
return true;
}
void printSolution(int color)
{
printf("Solution Exists:"
" Following are the assigned colors n");
for (int i = 0; i < V; i++)
printf(" %d ", color[i]);
printf("n");
}
algorithm graph colors backtracking
add a comment |
up vote
0
down vote
favorite
I have to find out the time complexity of graph coloring problem using backtracking. I have found somewhere it is O(n*m^n) where n=no vertex and m= number of color.
Suppose my code is given below how to find time complexity?
bool isSafe (int v, bool graph[V][V], int color, int c)
{
for (int i = 0; i < V; i++)
if (graph[v][i] && c == color[i])
return false;
return true;
}
bool graphColoringUtil(bool graph[V][V], int m, int color, int v)
{
if (v == V)
return true;
for (int c = 1; c <= m; c++)
{
if (isSafe(v, graph, color, c))
{
color[v] = c;
if (graphColoringUtil (graph, m, color, v+1) == true)
return true;
color[v] = 0;
}
}
return false;
}
bool graphColoring(bool graph[V][V], int m)
{
int *color = new int[V];
for (int i = 0; i < V; i++)
color[i] = 0;
if (graphColoringUtil(graph, m, color, 0) == false)
{
printf("Solution does not existn");
return false;
}
printSolution(color);
return true;
}
void printSolution(int color)
{
printf("Solution Exists:"
" Following are the assigned colors n");
for (int i = 0; i < V; i++)
printf(" %d ", color[i]);
printf("n");
}
algorithm graph colors backtracking
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
I have to find out the time complexity of graph coloring problem using backtracking. I have found somewhere it is O(n*m^n) where n=no vertex and m= number of color.
Suppose my code is given below how to find time complexity?
bool isSafe (int v, bool graph[V][V], int color, int c)
{
for (int i = 0; i < V; i++)
if (graph[v][i] && c == color[i])
return false;
return true;
}
bool graphColoringUtil(bool graph[V][V], int m, int color, int v)
{
if (v == V)
return true;
for (int c = 1; c <= m; c++)
{
if (isSafe(v, graph, color, c))
{
color[v] = c;
if (graphColoringUtil (graph, m, color, v+1) == true)
return true;
color[v] = 0;
}
}
return false;
}
bool graphColoring(bool graph[V][V], int m)
{
int *color = new int[V];
for (int i = 0; i < V; i++)
color[i] = 0;
if (graphColoringUtil(graph, m, color, 0) == false)
{
printf("Solution does not existn");
return false;
}
printSolution(color);
return true;
}
void printSolution(int color)
{
printf("Solution Exists:"
" Following are the assigned colors n");
for (int i = 0; i < V; i++)
printf(" %d ", color[i]);
printf("n");
}
algorithm graph colors backtracking
I have to find out the time complexity of graph coloring problem using backtracking. I have found somewhere it is O(n*m^n) where n=no vertex and m= number of color.
Suppose my code is given below how to find time complexity?
bool isSafe (int v, bool graph[V][V], int color, int c)
{
for (int i = 0; i < V; i++)
if (graph[v][i] && c == color[i])
return false;
return true;
}
bool graphColoringUtil(bool graph[V][V], int m, int color, int v)
{
if (v == V)
return true;
for (int c = 1; c <= m; c++)
{
if (isSafe(v, graph, color, c))
{
color[v] = c;
if (graphColoringUtil (graph, m, color, v+1) == true)
return true;
color[v] = 0;
}
}
return false;
}
bool graphColoring(bool graph[V][V], int m)
{
int *color = new int[V];
for (int i = 0; i < V; i++)
color[i] = 0;
if (graphColoringUtil(graph, m, color, 0) == false)
{
printf("Solution does not existn");
return false;
}
printSolution(color);
return true;
}
void printSolution(int color)
{
printf("Solution Exists:"
" Following are the assigned colors n");
for (int i = 0; i < V; i++)
printf(" %d ", color[i]);
printf("n");
}
algorithm graph colors backtracking
algorithm graph colors backtracking
asked Apr 17 at 20:55
Rahul Krishna
86
86
add a comment |
add a comment |
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f49887348%2fhow-to-find-time-complexity-of-graph-coloring-using-backtracking%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown