Autoencoder for Character Time-Series with deeplearning4j











up vote
0
down vote

favorite












I'm trying to create and train an LSTM Autoencoder on character sequences (strings). This is simply for dimensionality reduction, i.e. to be able to represent strings of up to T=1000 characters as fixed-length vectors of size N. For the sake of this example, let N = 10. Each character is one-hot encoded by arrays of size validChars (in my case validChars = 77).



I'm using ComputationalGraph in be able to later remove decoder layers and use remaining for encoding. By looking at dl4j-examples I have come up with this:



    ComputationGraphConfiguration conf = new NeuralNetConfiguration.Builder()
.seed(12345)
.l2(0.0001)
.weightInit(WeightInit.XAVIER)
.updater(new Adam(0.005))
.graphBuilder()
.addInputs("input")
.addLayer("encoder1", new LSTM.Builder().nIn(dictSize).nOut(250)
.activation(Activation.TANH).build(), "input")
.addLayer("encoder2", new LSTM.Builder().nIn(250).nOut(10)
.activation(Activation.TANH).build(), "encoder1")

.addVertex("fixed", new PreprocessorVertex(new RnnToFeedForwardPreProcessor()), "encoder2")
.addVertex("sequenced", new PreprocessorVertex(new FeedForwardToRnnPreProcessor()), "fixed")

.addLayer("decoder1", new LSTM.Builder().nIn(10).nOut(250)
.activation(Activation.TANH).build(), "sequenced")
.addLayer("decoder2", new LSTM.Builder().nIn(250).nOut(dictSize)
.activation(Activation.TANH).build(), "decoder1")

.addLayer("output", new RnnOutputLayer.Builder()
.lossFunction(LossFunctions.LossFunction.MCXENT)
.activation(Activation.SOFTMAX).nIn(dictSize).nOut(dictSize).build(), "decoder2")

.setOutputs("output")
.backpropType(BackpropType.TruncatedBPTT).tBPTTForwardLength(tbpttLength).tBPTTBackwardLength(tbpttLength)
.build();


With this, I expected the number of features to follow the path:
[77,T] -> [250,T] -> [10,T] -> [10] -> [10,T] -> [250, T] -> [77,T]



I have trained this network, and removed decoder part like so:



    ComputationGraph encoder = new TransferLearning.GraphBuilder(net)
.setFeatureExtractor("fixed")
.removeVertexAndConnections("sequenced")
.removeVertexAndConnections("decoder1")
.removeVertexAndConnections("decoder2")
.removeVertexAndConnections("output")
.addLayer("output", new ActivationLayer.Builder().activation(Activation.IDENTITY).build(), "fixed")
.setOutputs("output")
.setInputs("input")
.build();


But, when I encode a string of length 1000 with this encoder, it outputs an NDArray of shape [1000, 10], instead of 1-dimensional vector of length 10. My purpose is to represent the whole 1000 character sequence with one vector of length 10. What am I missing?










share|improve this question


























    up vote
    0
    down vote

    favorite












    I'm trying to create and train an LSTM Autoencoder on character sequences (strings). This is simply for dimensionality reduction, i.e. to be able to represent strings of up to T=1000 characters as fixed-length vectors of size N. For the sake of this example, let N = 10. Each character is one-hot encoded by arrays of size validChars (in my case validChars = 77).



    I'm using ComputationalGraph in be able to later remove decoder layers and use remaining for encoding. By looking at dl4j-examples I have come up with this:



        ComputationGraphConfiguration conf = new NeuralNetConfiguration.Builder()
    .seed(12345)
    .l2(0.0001)
    .weightInit(WeightInit.XAVIER)
    .updater(new Adam(0.005))
    .graphBuilder()
    .addInputs("input")
    .addLayer("encoder1", new LSTM.Builder().nIn(dictSize).nOut(250)
    .activation(Activation.TANH).build(), "input")
    .addLayer("encoder2", new LSTM.Builder().nIn(250).nOut(10)
    .activation(Activation.TANH).build(), "encoder1")

    .addVertex("fixed", new PreprocessorVertex(new RnnToFeedForwardPreProcessor()), "encoder2")
    .addVertex("sequenced", new PreprocessorVertex(new FeedForwardToRnnPreProcessor()), "fixed")

    .addLayer("decoder1", new LSTM.Builder().nIn(10).nOut(250)
    .activation(Activation.TANH).build(), "sequenced")
    .addLayer("decoder2", new LSTM.Builder().nIn(250).nOut(dictSize)
    .activation(Activation.TANH).build(), "decoder1")

    .addLayer("output", new RnnOutputLayer.Builder()
    .lossFunction(LossFunctions.LossFunction.MCXENT)
    .activation(Activation.SOFTMAX).nIn(dictSize).nOut(dictSize).build(), "decoder2")

    .setOutputs("output")
    .backpropType(BackpropType.TruncatedBPTT).tBPTTForwardLength(tbpttLength).tBPTTBackwardLength(tbpttLength)
    .build();


    With this, I expected the number of features to follow the path:
    [77,T] -> [250,T] -> [10,T] -> [10] -> [10,T] -> [250, T] -> [77,T]



    I have trained this network, and removed decoder part like so:



        ComputationGraph encoder = new TransferLearning.GraphBuilder(net)
    .setFeatureExtractor("fixed")
    .removeVertexAndConnections("sequenced")
    .removeVertexAndConnections("decoder1")
    .removeVertexAndConnections("decoder2")
    .removeVertexAndConnections("output")
    .addLayer("output", new ActivationLayer.Builder().activation(Activation.IDENTITY).build(), "fixed")
    .setOutputs("output")
    .setInputs("input")
    .build();


    But, when I encode a string of length 1000 with this encoder, it outputs an NDArray of shape [1000, 10], instead of 1-dimensional vector of length 10. My purpose is to represent the whole 1000 character sequence with one vector of length 10. What am I missing?










    share|improve this question
























      up vote
      0
      down vote

      favorite









      up vote
      0
      down vote

      favorite











      I'm trying to create and train an LSTM Autoencoder on character sequences (strings). This is simply for dimensionality reduction, i.e. to be able to represent strings of up to T=1000 characters as fixed-length vectors of size N. For the sake of this example, let N = 10. Each character is one-hot encoded by arrays of size validChars (in my case validChars = 77).



      I'm using ComputationalGraph in be able to later remove decoder layers and use remaining for encoding. By looking at dl4j-examples I have come up with this:



          ComputationGraphConfiguration conf = new NeuralNetConfiguration.Builder()
      .seed(12345)
      .l2(0.0001)
      .weightInit(WeightInit.XAVIER)
      .updater(new Adam(0.005))
      .graphBuilder()
      .addInputs("input")
      .addLayer("encoder1", new LSTM.Builder().nIn(dictSize).nOut(250)
      .activation(Activation.TANH).build(), "input")
      .addLayer("encoder2", new LSTM.Builder().nIn(250).nOut(10)
      .activation(Activation.TANH).build(), "encoder1")

      .addVertex("fixed", new PreprocessorVertex(new RnnToFeedForwardPreProcessor()), "encoder2")
      .addVertex("sequenced", new PreprocessorVertex(new FeedForwardToRnnPreProcessor()), "fixed")

      .addLayer("decoder1", new LSTM.Builder().nIn(10).nOut(250)
      .activation(Activation.TANH).build(), "sequenced")
      .addLayer("decoder2", new LSTM.Builder().nIn(250).nOut(dictSize)
      .activation(Activation.TANH).build(), "decoder1")

      .addLayer("output", new RnnOutputLayer.Builder()
      .lossFunction(LossFunctions.LossFunction.MCXENT)
      .activation(Activation.SOFTMAX).nIn(dictSize).nOut(dictSize).build(), "decoder2")

      .setOutputs("output")
      .backpropType(BackpropType.TruncatedBPTT).tBPTTForwardLength(tbpttLength).tBPTTBackwardLength(tbpttLength)
      .build();


      With this, I expected the number of features to follow the path:
      [77,T] -> [250,T] -> [10,T] -> [10] -> [10,T] -> [250, T] -> [77,T]



      I have trained this network, and removed decoder part like so:



          ComputationGraph encoder = new TransferLearning.GraphBuilder(net)
      .setFeatureExtractor("fixed")
      .removeVertexAndConnections("sequenced")
      .removeVertexAndConnections("decoder1")
      .removeVertexAndConnections("decoder2")
      .removeVertexAndConnections("output")
      .addLayer("output", new ActivationLayer.Builder().activation(Activation.IDENTITY).build(), "fixed")
      .setOutputs("output")
      .setInputs("input")
      .build();


      But, when I encode a string of length 1000 with this encoder, it outputs an NDArray of shape [1000, 10], instead of 1-dimensional vector of length 10. My purpose is to represent the whole 1000 character sequence with one vector of length 10. What am I missing?










      share|improve this question













      I'm trying to create and train an LSTM Autoencoder on character sequences (strings). This is simply for dimensionality reduction, i.e. to be able to represent strings of up to T=1000 characters as fixed-length vectors of size N. For the sake of this example, let N = 10. Each character is one-hot encoded by arrays of size validChars (in my case validChars = 77).



      I'm using ComputationalGraph in be able to later remove decoder layers and use remaining for encoding. By looking at dl4j-examples I have come up with this:



          ComputationGraphConfiguration conf = new NeuralNetConfiguration.Builder()
      .seed(12345)
      .l2(0.0001)
      .weightInit(WeightInit.XAVIER)
      .updater(new Adam(0.005))
      .graphBuilder()
      .addInputs("input")
      .addLayer("encoder1", new LSTM.Builder().nIn(dictSize).nOut(250)
      .activation(Activation.TANH).build(), "input")
      .addLayer("encoder2", new LSTM.Builder().nIn(250).nOut(10)
      .activation(Activation.TANH).build(), "encoder1")

      .addVertex("fixed", new PreprocessorVertex(new RnnToFeedForwardPreProcessor()), "encoder2")
      .addVertex("sequenced", new PreprocessorVertex(new FeedForwardToRnnPreProcessor()), "fixed")

      .addLayer("decoder1", new LSTM.Builder().nIn(10).nOut(250)
      .activation(Activation.TANH).build(), "sequenced")
      .addLayer("decoder2", new LSTM.Builder().nIn(250).nOut(dictSize)
      .activation(Activation.TANH).build(), "decoder1")

      .addLayer("output", new RnnOutputLayer.Builder()
      .lossFunction(LossFunctions.LossFunction.MCXENT)
      .activation(Activation.SOFTMAX).nIn(dictSize).nOut(dictSize).build(), "decoder2")

      .setOutputs("output")
      .backpropType(BackpropType.TruncatedBPTT).tBPTTForwardLength(tbpttLength).tBPTTBackwardLength(tbpttLength)
      .build();


      With this, I expected the number of features to follow the path:
      [77,T] -> [250,T] -> [10,T] -> [10] -> [10,T] -> [250, T] -> [77,T]



      I have trained this network, and removed decoder part like so:



          ComputationGraph encoder = new TransferLearning.GraphBuilder(net)
      .setFeatureExtractor("fixed")
      .removeVertexAndConnections("sequenced")
      .removeVertexAndConnections("decoder1")
      .removeVertexAndConnections("decoder2")
      .removeVertexAndConnections("output")
      .addLayer("output", new ActivationLayer.Builder().activation(Activation.IDENTITY).build(), "fixed")
      .setOutputs("output")
      .setInputs("input")
      .build();


      But, when I encode a string of length 1000 with this encoder, it outputs an NDArray of shape [1000, 10], instead of 1-dimensional vector of length 10. My purpose is to represent the whole 1000 character sequence with one vector of length 10. What am I missing?







      machine-learning deep-learning deeplearning4j






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked Nov 10 at 16:03









      Gena L

      274




      274





























          active

          oldest

          votes











          Your Answer






          StackExchange.ifUsing("editor", function () {
          StackExchange.using("externalEditor", function () {
          StackExchange.using("snippets", function () {
          StackExchange.snippets.init();
          });
          });
          }, "code-snippets");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "1"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














           

          draft saved


          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53240765%2fautoencoder-for-character-time-series-with-deeplearning4j%23new-answer', 'question_page');
          }
          );

          Post as a guest





































          active

          oldest

          votes













          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















           

          draft saved


          draft discarded



















































           


          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53240765%2fautoencoder-for-character-time-series-with-deeplearning4j%23new-answer', 'question_page');
          }
          );

          Post as a guest




















































































          Popular posts from this blog

          Bressuire

          Vorschmack

          Quarantine