Fill missing value by averaging previous row value
I want to fill missing value with the average of previous N
row value, example is shown below:
N=2
df = pd.DataFrame([[np.nan, 2, np.nan, 0],
[3, 4, np.nan, 1],
[np.nan, np.nan, np.nan, 5],
[np.nan, 3, np.nan, np.nan]],
columns=list('ABCD'))
DataFrame is like:
A B C D
0 NaN 2.0 NaN 0
1 3.0 4.0 NaN 1
2 NaN NaN NaN 5
3 NaN 3.0 NaN NaN
Result should be:
A B C D
0 NaN 2.0 NaN 0
1 3.0 4.0 NaN 1
2 NaN (4+2)/2 NaN 5
3 NaN 3.0 NaN (1+5)/2
I am wondering if there is elegant and fast way to achieve this without for loop.
python python-3.x pandas
add a comment |
I want to fill missing value with the average of previous N
row value, example is shown below:
N=2
df = pd.DataFrame([[np.nan, 2, np.nan, 0],
[3, 4, np.nan, 1],
[np.nan, np.nan, np.nan, 5],
[np.nan, 3, np.nan, np.nan]],
columns=list('ABCD'))
DataFrame is like:
A B C D
0 NaN 2.0 NaN 0
1 3.0 4.0 NaN 1
2 NaN NaN NaN 5
3 NaN 3.0 NaN NaN
Result should be:
A B C D
0 NaN 2.0 NaN 0
1 3.0 4.0 NaN 1
2 NaN (4+2)/2 NaN 5
3 NaN 3.0 NaN (1+5)/2
I am wondering if there is elegant and fast way to achieve this without for loop.
python python-3.x pandas
add a comment |
I want to fill missing value with the average of previous N
row value, example is shown below:
N=2
df = pd.DataFrame([[np.nan, 2, np.nan, 0],
[3, 4, np.nan, 1],
[np.nan, np.nan, np.nan, 5],
[np.nan, 3, np.nan, np.nan]],
columns=list('ABCD'))
DataFrame is like:
A B C D
0 NaN 2.0 NaN 0
1 3.0 4.0 NaN 1
2 NaN NaN NaN 5
3 NaN 3.0 NaN NaN
Result should be:
A B C D
0 NaN 2.0 NaN 0
1 3.0 4.0 NaN 1
2 NaN (4+2)/2 NaN 5
3 NaN 3.0 NaN (1+5)/2
I am wondering if there is elegant and fast way to achieve this without for loop.
python python-3.x pandas
I want to fill missing value with the average of previous N
row value, example is shown below:
N=2
df = pd.DataFrame([[np.nan, 2, np.nan, 0],
[3, 4, np.nan, 1],
[np.nan, np.nan, np.nan, 5],
[np.nan, 3, np.nan, np.nan]],
columns=list('ABCD'))
DataFrame is like:
A B C D
0 NaN 2.0 NaN 0
1 3.0 4.0 NaN 1
2 NaN NaN NaN 5
3 NaN 3.0 NaN NaN
Result should be:
A B C D
0 NaN 2.0 NaN 0
1 3.0 4.0 NaN 1
2 NaN (4+2)/2 NaN 5
3 NaN 3.0 NaN (1+5)/2
I am wondering if there is elegant and fast way to achieve this without for loop.
python python-3.x pandas
python python-3.x pandas
edited Nov 16 '18 at 10:57
jpp
102k2165116
102k2165116
asked Nov 16 '18 at 10:48
GarveyGarvey
419314
419314
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
rolling
+ mean
+ shift
You will need to modify the below logic to interpret the mean of NaN
and another value, in the case where one of the previous two values are null.
df = df.fillna(df.rolling(2).mean().shift())
print(df)
A B C D
0 NaN 2.0 NaN 0.0
1 3.0 4.0 NaN 1.0
2 NaN 3.0 NaN 5.0
3 NaN 3.0 NaN 3.0
seems rolling(2) will not consider the all previous n values if the rows are greater than 4 :-| @jpp
– Naga Kiran
Nov 16 '18 at 11:50
1
@NagaKiran, Yes, it does. The issue is withNaN
treatment. OP hasn't defined what the average ofNaN
and another value should be, so I haven't second-guessed.
– jpp
Nov 16 '18 at 11:50
add a comment |
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53336313%2ffill-missing-value-by-averaging-previous-row-value%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
rolling
+ mean
+ shift
You will need to modify the below logic to interpret the mean of NaN
and another value, in the case where one of the previous two values are null.
df = df.fillna(df.rolling(2).mean().shift())
print(df)
A B C D
0 NaN 2.0 NaN 0.0
1 3.0 4.0 NaN 1.0
2 NaN 3.0 NaN 5.0
3 NaN 3.0 NaN 3.0
seems rolling(2) will not consider the all previous n values if the rows are greater than 4 :-| @jpp
– Naga Kiran
Nov 16 '18 at 11:50
1
@NagaKiran, Yes, it does. The issue is withNaN
treatment. OP hasn't defined what the average ofNaN
and another value should be, so I haven't second-guessed.
– jpp
Nov 16 '18 at 11:50
add a comment |
rolling
+ mean
+ shift
You will need to modify the below logic to interpret the mean of NaN
and another value, in the case where one of the previous two values are null.
df = df.fillna(df.rolling(2).mean().shift())
print(df)
A B C D
0 NaN 2.0 NaN 0.0
1 3.0 4.0 NaN 1.0
2 NaN 3.0 NaN 5.0
3 NaN 3.0 NaN 3.0
seems rolling(2) will not consider the all previous n values if the rows are greater than 4 :-| @jpp
– Naga Kiran
Nov 16 '18 at 11:50
1
@NagaKiran, Yes, it does. The issue is withNaN
treatment. OP hasn't defined what the average ofNaN
and another value should be, so I haven't second-guessed.
– jpp
Nov 16 '18 at 11:50
add a comment |
rolling
+ mean
+ shift
You will need to modify the below logic to interpret the mean of NaN
and another value, in the case where one of the previous two values are null.
df = df.fillna(df.rolling(2).mean().shift())
print(df)
A B C D
0 NaN 2.0 NaN 0.0
1 3.0 4.0 NaN 1.0
2 NaN 3.0 NaN 5.0
3 NaN 3.0 NaN 3.0
rolling
+ mean
+ shift
You will need to modify the below logic to interpret the mean of NaN
and another value, in the case where one of the previous two values are null.
df = df.fillna(df.rolling(2).mean().shift())
print(df)
A B C D
0 NaN 2.0 NaN 0.0
1 3.0 4.0 NaN 1.0
2 NaN 3.0 NaN 5.0
3 NaN 3.0 NaN 3.0
edited Nov 16 '18 at 11:04
answered Nov 16 '18 at 10:57
jppjpp
102k2165116
102k2165116
seems rolling(2) will not consider the all previous n values if the rows are greater than 4 :-| @jpp
– Naga Kiran
Nov 16 '18 at 11:50
1
@NagaKiran, Yes, it does. The issue is withNaN
treatment. OP hasn't defined what the average ofNaN
and another value should be, so I haven't second-guessed.
– jpp
Nov 16 '18 at 11:50
add a comment |
seems rolling(2) will not consider the all previous n values if the rows are greater than 4 :-| @jpp
– Naga Kiran
Nov 16 '18 at 11:50
1
@NagaKiran, Yes, it does. The issue is withNaN
treatment. OP hasn't defined what the average ofNaN
and another value should be, so I haven't second-guessed.
– jpp
Nov 16 '18 at 11:50
seems rolling(2) will not consider the all previous n values if the rows are greater than 4 :-| @jpp
– Naga Kiran
Nov 16 '18 at 11:50
seems rolling(2) will not consider the all previous n values if the rows are greater than 4 :-| @jpp
– Naga Kiran
Nov 16 '18 at 11:50
1
1
@NagaKiran, Yes, it does. The issue is with
NaN
treatment. OP hasn't defined what the average of NaN
and another value should be, so I haven't second-guessed.– jpp
Nov 16 '18 at 11:50
@NagaKiran, Yes, it does. The issue is with
NaN
treatment. OP hasn't defined what the average of NaN
and another value should be, so I haven't second-guessed.– jpp
Nov 16 '18 at 11:50
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53336313%2ffill-missing-value-by-averaging-previous-row-value%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown