reshaping data frame and applying calculation for each row












2















I have a data frame as follows:



df=pd.DataFrame({ 'family' : ["A","A","B","B"],
'V1' : [5,5,40,10,],
'V2' :[50,10,180,20],
'gr_0' :["all","all","all","all"],
'gr_1' :["m1","m1","m2","m3"],
'gr_2' :["m12","m12","m12","m9"],
'gr_3' :["NO","m14","m15","NO"]
})


and I would like to transform it in the following way:



df_new=pd.DataFrame({ 'family' : ["A","A","A","A","B","B","B","B","B","B"],
'gr' : ["all","m1","m12","m14","all","m2","m3","m12","m9","m15"],
"calc(sumV2/sumV1)":[6,6,6,2,4,4.5,2,4.5,2,4.5]
})




  family   gr  calc(sumV2/sumV1)
0 A all 6.0
1 A m1 6.0
2 A m12 6.0
3 A m14 2.0
4 B all 4.0
5 B m2 4.5
6 B m3 2.0
7 B m12 4.5
8 B m9 2.0
9 B m15 4.5


In order to reach to df_new:




  1. I want the rows to be aligned by "family" X each unique value of "gr_" columns.

  2. For every line to calculate the respective sum(V2)/sum(V1) as shown in the df_new.


I am quite new to python. Softcoding of this seems quite complex to me.
Preferably, I don't want "No" records to be listed in this df_new but it can stay in the output as well.










share|improve this question





























    2















    I have a data frame as follows:



    df=pd.DataFrame({ 'family' : ["A","A","B","B"],
    'V1' : [5,5,40,10,],
    'V2' :[50,10,180,20],
    'gr_0' :["all","all","all","all"],
    'gr_1' :["m1","m1","m2","m3"],
    'gr_2' :["m12","m12","m12","m9"],
    'gr_3' :["NO","m14","m15","NO"]
    })


    and I would like to transform it in the following way:



    df_new=pd.DataFrame({ 'family' : ["A","A","A","A","B","B","B","B","B","B"],
    'gr' : ["all","m1","m12","m14","all","m2","m3","m12","m9","m15"],
    "calc(sumV2/sumV1)":[6,6,6,2,4,4.5,2,4.5,2,4.5]
    })




      family   gr  calc(sumV2/sumV1)
    0 A all 6.0
    1 A m1 6.0
    2 A m12 6.0
    3 A m14 2.0
    4 B all 4.0
    5 B m2 4.5
    6 B m3 2.0
    7 B m12 4.5
    8 B m9 2.0
    9 B m15 4.5


    In order to reach to df_new:




    1. I want the rows to be aligned by "family" X each unique value of "gr_" columns.

    2. For every line to calculate the respective sum(V2)/sum(V1) as shown in the df_new.


    I am quite new to python. Softcoding of this seems quite complex to me.
    Preferably, I don't want "No" records to be listed in this df_new but it can stay in the output as well.










    share|improve this question



























      2












      2








      2


      1






      I have a data frame as follows:



      df=pd.DataFrame({ 'family' : ["A","A","B","B"],
      'V1' : [5,5,40,10,],
      'V2' :[50,10,180,20],
      'gr_0' :["all","all","all","all"],
      'gr_1' :["m1","m1","m2","m3"],
      'gr_2' :["m12","m12","m12","m9"],
      'gr_3' :["NO","m14","m15","NO"]
      })


      and I would like to transform it in the following way:



      df_new=pd.DataFrame({ 'family' : ["A","A","A","A","B","B","B","B","B","B"],
      'gr' : ["all","m1","m12","m14","all","m2","m3","m12","m9","m15"],
      "calc(sumV2/sumV1)":[6,6,6,2,4,4.5,2,4.5,2,4.5]
      })




        family   gr  calc(sumV2/sumV1)
      0 A all 6.0
      1 A m1 6.0
      2 A m12 6.0
      3 A m14 2.0
      4 B all 4.0
      5 B m2 4.5
      6 B m3 2.0
      7 B m12 4.5
      8 B m9 2.0
      9 B m15 4.5


      In order to reach to df_new:




      1. I want the rows to be aligned by "family" X each unique value of "gr_" columns.

      2. For every line to calculate the respective sum(V2)/sum(V1) as shown in the df_new.


      I am quite new to python. Softcoding of this seems quite complex to me.
      Preferably, I don't want "No" records to be listed in this df_new but it can stay in the output as well.










      share|improve this question
















      I have a data frame as follows:



      df=pd.DataFrame({ 'family' : ["A","A","B","B"],
      'V1' : [5,5,40,10,],
      'V2' :[50,10,180,20],
      'gr_0' :["all","all","all","all"],
      'gr_1' :["m1","m1","m2","m3"],
      'gr_2' :["m12","m12","m12","m9"],
      'gr_3' :["NO","m14","m15","NO"]
      })


      and I would like to transform it in the following way:



      df_new=pd.DataFrame({ 'family' : ["A","A","A","A","B","B","B","B","B","B"],
      'gr' : ["all","m1","m12","m14","all","m2","m3","m12","m9","m15"],
      "calc(sumV2/sumV1)":[6,6,6,2,4,4.5,2,4.5,2,4.5]
      })




        family   gr  calc(sumV2/sumV1)
      0 A all 6.0
      1 A m1 6.0
      2 A m12 6.0
      3 A m14 2.0
      4 B all 4.0
      5 B m2 4.5
      6 B m3 2.0
      7 B m12 4.5
      8 B m9 2.0
      9 B m15 4.5


      In order to reach to df_new:




      1. I want the rows to be aligned by "family" X each unique value of "gr_" columns.

      2. For every line to calculate the respective sum(V2)/sum(V1) as shown in the df_new.


      I am quite new to python. Softcoding of this seems quite complex to me.
      Preferably, I don't want "No" records to be listed in this df_new but it can stay in the output as well.







      python python-3.x pandas pivot-table pandas-groupby






      share|improve this question















      share|improve this question













      share|improve this question




      share|improve this question








      edited Nov 15 '18 at 17:55









      user3483203

      31.4k82656




      31.4k82656










      asked Nov 15 '18 at 16:22









      glsvmkyglsvmky

      111




      111
























          2 Answers
          2






          active

          oldest

          votes


















          2














          You can do so with this:



          df_new = df.melt(id_vars=['family','V1','V2']).groupby(['family','value'])
          .apply(lambda x: x.V2.sum()/x.V1.sum())
          .reset_index(name='calc(sumV2/sumV1)')
          df_new = df_new[df_new.value != 'NO'].reset_index(drop=True)

          print(df_new)

          family value calc(sumV2/sumV1)
          0 A all 6.0
          1 A m1 6.0
          2 A m12 6.0
          3 A m14 2.0
          4 B all 4.0
          5 B m12 4.5
          6 B m15 4.5
          7 B m2 4.5
          8 B m3 2.0
          9 B m9 2.0





          share|improve this answer





















          • 1





            Thanks for that @Ben.T :)

            – yatu
            Nov 15 '18 at 16:47





















          1















          melt + groupby:



          v = df.melt(id_vars=['family','V1','V2'], value_name='gr')
          w = v.loc[v.gr != 'NO']
          x = w.groupby(['family', 'gr']).sum()

          (x.V2 / x.V1).reset_index(name='calc(sumV2/sumV1)')




            family   gr  calc(sumV2/sumV1)
          0 A all 6.0
          1 A m1 6.0
          2 A m12 6.0
          3 A m14 2.0
          4 B all 4.0
          5 B m12 4.5
          6 B m15 4.5
          7 B m2 4.5
          8 B m3 2.0
          9 B m9 2.0




          A similar approach to this answer, but with the benefit of being fully vectorized, and avoiding apply





          Performance:



          a = np.random.randint(1, 1000, (1_000_000, 7))
          df = pd.DataFrame(a, columns=['family', 'V1', 'V2', 'gr_0', 'gr_1', 'gr_2', 'gr_3'])
          df[['gr_0', 'gr_1', 'gr_2', 'gr_3']] = df[['gr_0', 'gr_1', 'gr_2', 'gr_3']].astype(str)

          %%timeit
          v = df.melt(id_vars=['family','V1','V2'], value_name='gr')
          w = v.loc[v.gr != 'NO']
          x = w.groupby(['family', 'gr']).sum()
          (x.V2 / x.V1).reset_index(name='calc(sumV2/sumV1)')

          2.71 s ± 32.9 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

          %%timeit
          df_new = (df.melt(id_vars=['family','V1','V2']).groupby(['family','value'])
          .apply(lambda x: x.V2.sum()/x.V1.sum())
          .reset_index(name='calc(sumV2/sumV1)'))
          df_new = df_new[df_new.value != 'NO'].reset_index(drop=True)

          5min 24s ± 3.35 s per loop (mean ± std. dev. of 7 runs, 1 loop each)





          share|improve this answer


























          • @AlexandreNixon similar in approach, but I just added timings to show why apply should really be avoided. Vectorized operations make a big difference

            – user3483203
            Nov 15 '18 at 17:54











          • Fair point @user3483203

            – yatu
            Nov 15 '18 at 19:01











          Your Answer






          StackExchange.ifUsing("editor", function () {
          StackExchange.using("externalEditor", function () {
          StackExchange.using("snippets", function () {
          StackExchange.snippets.init();
          });
          });
          }, "code-snippets");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "1"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53323755%2freshaping-data-frame-and-applying-calculation-for-each-row%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          2 Answers
          2






          active

          oldest

          votes








          2 Answers
          2






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes









          2














          You can do so with this:



          df_new = df.melt(id_vars=['family','V1','V2']).groupby(['family','value'])
          .apply(lambda x: x.V2.sum()/x.V1.sum())
          .reset_index(name='calc(sumV2/sumV1)')
          df_new = df_new[df_new.value != 'NO'].reset_index(drop=True)

          print(df_new)

          family value calc(sumV2/sumV1)
          0 A all 6.0
          1 A m1 6.0
          2 A m12 6.0
          3 A m14 2.0
          4 B all 4.0
          5 B m12 4.5
          6 B m15 4.5
          7 B m2 4.5
          8 B m3 2.0
          9 B m9 2.0





          share|improve this answer





















          • 1





            Thanks for that @Ben.T :)

            – yatu
            Nov 15 '18 at 16:47


















          2














          You can do so with this:



          df_new = df.melt(id_vars=['family','V1','V2']).groupby(['family','value'])
          .apply(lambda x: x.V2.sum()/x.V1.sum())
          .reset_index(name='calc(sumV2/sumV1)')
          df_new = df_new[df_new.value != 'NO'].reset_index(drop=True)

          print(df_new)

          family value calc(sumV2/sumV1)
          0 A all 6.0
          1 A m1 6.0
          2 A m12 6.0
          3 A m14 2.0
          4 B all 4.0
          5 B m12 4.5
          6 B m15 4.5
          7 B m2 4.5
          8 B m3 2.0
          9 B m9 2.0





          share|improve this answer





















          • 1





            Thanks for that @Ben.T :)

            – yatu
            Nov 15 '18 at 16:47
















          2












          2








          2







          You can do so with this:



          df_new = df.melt(id_vars=['family','V1','V2']).groupby(['family','value'])
          .apply(lambda x: x.V2.sum()/x.V1.sum())
          .reset_index(name='calc(sumV2/sumV1)')
          df_new = df_new[df_new.value != 'NO'].reset_index(drop=True)

          print(df_new)

          family value calc(sumV2/sumV1)
          0 A all 6.0
          1 A m1 6.0
          2 A m12 6.0
          3 A m14 2.0
          4 B all 4.0
          5 B m12 4.5
          6 B m15 4.5
          7 B m2 4.5
          8 B m3 2.0
          9 B m9 2.0





          share|improve this answer















          You can do so with this:



          df_new = df.melt(id_vars=['family','V1','V2']).groupby(['family','value'])
          .apply(lambda x: x.V2.sum()/x.V1.sum())
          .reset_index(name='calc(sumV2/sumV1)')
          df_new = df_new[df_new.value != 'NO'].reset_index(drop=True)

          print(df_new)

          family value calc(sumV2/sumV1)
          0 A all 6.0
          1 A m1 6.0
          2 A m12 6.0
          3 A m14 2.0
          4 B all 4.0
          5 B m12 4.5
          6 B m15 4.5
          7 B m2 4.5
          8 B m3 2.0
          9 B m9 2.0






          share|improve this answer














          share|improve this answer



          share|improve this answer








          edited Nov 15 '18 at 16:47

























          answered Nov 15 '18 at 16:33









          yatuyatu

          13.2k31341




          13.2k31341








          • 1





            Thanks for that @Ben.T :)

            – yatu
            Nov 15 '18 at 16:47
















          • 1





            Thanks for that @Ben.T :)

            – yatu
            Nov 15 '18 at 16:47










          1




          1





          Thanks for that @Ben.T :)

          – yatu
          Nov 15 '18 at 16:47







          Thanks for that @Ben.T :)

          – yatu
          Nov 15 '18 at 16:47















          1















          melt + groupby:



          v = df.melt(id_vars=['family','V1','V2'], value_name='gr')
          w = v.loc[v.gr != 'NO']
          x = w.groupby(['family', 'gr']).sum()

          (x.V2 / x.V1).reset_index(name='calc(sumV2/sumV1)')




            family   gr  calc(sumV2/sumV1)
          0 A all 6.0
          1 A m1 6.0
          2 A m12 6.0
          3 A m14 2.0
          4 B all 4.0
          5 B m12 4.5
          6 B m15 4.5
          7 B m2 4.5
          8 B m3 2.0
          9 B m9 2.0




          A similar approach to this answer, but with the benefit of being fully vectorized, and avoiding apply





          Performance:



          a = np.random.randint(1, 1000, (1_000_000, 7))
          df = pd.DataFrame(a, columns=['family', 'V1', 'V2', 'gr_0', 'gr_1', 'gr_2', 'gr_3'])
          df[['gr_0', 'gr_1', 'gr_2', 'gr_3']] = df[['gr_0', 'gr_1', 'gr_2', 'gr_3']].astype(str)

          %%timeit
          v = df.melt(id_vars=['family','V1','V2'], value_name='gr')
          w = v.loc[v.gr != 'NO']
          x = w.groupby(['family', 'gr']).sum()
          (x.V2 / x.V1).reset_index(name='calc(sumV2/sumV1)')

          2.71 s ± 32.9 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

          %%timeit
          df_new = (df.melt(id_vars=['family','V1','V2']).groupby(['family','value'])
          .apply(lambda x: x.V2.sum()/x.V1.sum())
          .reset_index(name='calc(sumV2/sumV1)'))
          df_new = df_new[df_new.value != 'NO'].reset_index(drop=True)

          5min 24s ± 3.35 s per loop (mean ± std. dev. of 7 runs, 1 loop each)





          share|improve this answer


























          • @AlexandreNixon similar in approach, but I just added timings to show why apply should really be avoided. Vectorized operations make a big difference

            – user3483203
            Nov 15 '18 at 17:54











          • Fair point @user3483203

            – yatu
            Nov 15 '18 at 19:01
















          1















          melt + groupby:



          v = df.melt(id_vars=['family','V1','V2'], value_name='gr')
          w = v.loc[v.gr != 'NO']
          x = w.groupby(['family', 'gr']).sum()

          (x.V2 / x.V1).reset_index(name='calc(sumV2/sumV1)')




            family   gr  calc(sumV2/sumV1)
          0 A all 6.0
          1 A m1 6.0
          2 A m12 6.0
          3 A m14 2.0
          4 B all 4.0
          5 B m12 4.5
          6 B m15 4.5
          7 B m2 4.5
          8 B m3 2.0
          9 B m9 2.0




          A similar approach to this answer, but with the benefit of being fully vectorized, and avoiding apply





          Performance:



          a = np.random.randint(1, 1000, (1_000_000, 7))
          df = pd.DataFrame(a, columns=['family', 'V1', 'V2', 'gr_0', 'gr_1', 'gr_2', 'gr_3'])
          df[['gr_0', 'gr_1', 'gr_2', 'gr_3']] = df[['gr_0', 'gr_1', 'gr_2', 'gr_3']].astype(str)

          %%timeit
          v = df.melt(id_vars=['family','V1','V2'], value_name='gr')
          w = v.loc[v.gr != 'NO']
          x = w.groupby(['family', 'gr']).sum()
          (x.V2 / x.V1).reset_index(name='calc(sumV2/sumV1)')

          2.71 s ± 32.9 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

          %%timeit
          df_new = (df.melt(id_vars=['family','V1','V2']).groupby(['family','value'])
          .apply(lambda x: x.V2.sum()/x.V1.sum())
          .reset_index(name='calc(sumV2/sumV1)'))
          df_new = df_new[df_new.value != 'NO'].reset_index(drop=True)

          5min 24s ± 3.35 s per loop (mean ± std. dev. of 7 runs, 1 loop each)





          share|improve this answer


























          • @AlexandreNixon similar in approach, but I just added timings to show why apply should really be avoided. Vectorized operations make a big difference

            – user3483203
            Nov 15 '18 at 17:54











          • Fair point @user3483203

            – yatu
            Nov 15 '18 at 19:01














          1












          1








          1








          melt + groupby:



          v = df.melt(id_vars=['family','V1','V2'], value_name='gr')
          w = v.loc[v.gr != 'NO']
          x = w.groupby(['family', 'gr']).sum()

          (x.V2 / x.V1).reset_index(name='calc(sumV2/sumV1)')




            family   gr  calc(sumV2/sumV1)
          0 A all 6.0
          1 A m1 6.0
          2 A m12 6.0
          3 A m14 2.0
          4 B all 4.0
          5 B m12 4.5
          6 B m15 4.5
          7 B m2 4.5
          8 B m3 2.0
          9 B m9 2.0




          A similar approach to this answer, but with the benefit of being fully vectorized, and avoiding apply





          Performance:



          a = np.random.randint(1, 1000, (1_000_000, 7))
          df = pd.DataFrame(a, columns=['family', 'V1', 'V2', 'gr_0', 'gr_1', 'gr_2', 'gr_3'])
          df[['gr_0', 'gr_1', 'gr_2', 'gr_3']] = df[['gr_0', 'gr_1', 'gr_2', 'gr_3']].astype(str)

          %%timeit
          v = df.melt(id_vars=['family','V1','V2'], value_name='gr')
          w = v.loc[v.gr != 'NO']
          x = w.groupby(['family', 'gr']).sum()
          (x.V2 / x.V1).reset_index(name='calc(sumV2/sumV1)')

          2.71 s ± 32.9 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

          %%timeit
          df_new = (df.melt(id_vars=['family','V1','V2']).groupby(['family','value'])
          .apply(lambda x: x.V2.sum()/x.V1.sum())
          .reset_index(name='calc(sumV2/sumV1)'))
          df_new = df_new[df_new.value != 'NO'].reset_index(drop=True)

          5min 24s ± 3.35 s per loop (mean ± std. dev. of 7 runs, 1 loop each)





          share|improve this answer
















          melt + groupby:



          v = df.melt(id_vars=['family','V1','V2'], value_name='gr')
          w = v.loc[v.gr != 'NO']
          x = w.groupby(['family', 'gr']).sum()

          (x.V2 / x.V1).reset_index(name='calc(sumV2/sumV1)')




            family   gr  calc(sumV2/sumV1)
          0 A all 6.0
          1 A m1 6.0
          2 A m12 6.0
          3 A m14 2.0
          4 B all 4.0
          5 B m12 4.5
          6 B m15 4.5
          7 B m2 4.5
          8 B m3 2.0
          9 B m9 2.0




          A similar approach to this answer, but with the benefit of being fully vectorized, and avoiding apply





          Performance:



          a = np.random.randint(1, 1000, (1_000_000, 7))
          df = pd.DataFrame(a, columns=['family', 'V1', 'V2', 'gr_0', 'gr_1', 'gr_2', 'gr_3'])
          df[['gr_0', 'gr_1', 'gr_2', 'gr_3']] = df[['gr_0', 'gr_1', 'gr_2', 'gr_3']].astype(str)

          %%timeit
          v = df.melt(id_vars=['family','V1','V2'], value_name='gr')
          w = v.loc[v.gr != 'NO']
          x = w.groupby(['family', 'gr']).sum()
          (x.V2 / x.V1).reset_index(name='calc(sumV2/sumV1)')

          2.71 s ± 32.9 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

          %%timeit
          df_new = (df.melt(id_vars=['family','V1','V2']).groupby(['family','value'])
          .apply(lambda x: x.V2.sum()/x.V1.sum())
          .reset_index(name='calc(sumV2/sumV1)'))
          df_new = df_new[df_new.value != 'NO'].reset_index(drop=True)

          5min 24s ± 3.35 s per loop (mean ± std. dev. of 7 runs, 1 loop each)






          share|improve this answer














          share|improve this answer



          share|improve this answer








          edited Nov 15 '18 at 17:53

























          answered Nov 15 '18 at 16:47









          user3483203user3483203

          31.4k82656




          31.4k82656













          • @AlexandreNixon similar in approach, but I just added timings to show why apply should really be avoided. Vectorized operations make a big difference

            – user3483203
            Nov 15 '18 at 17:54











          • Fair point @user3483203

            – yatu
            Nov 15 '18 at 19:01



















          • @AlexandreNixon similar in approach, but I just added timings to show why apply should really be avoided. Vectorized operations make a big difference

            – user3483203
            Nov 15 '18 at 17:54











          • Fair point @user3483203

            – yatu
            Nov 15 '18 at 19:01

















          @AlexandreNixon similar in approach, but I just added timings to show why apply should really be avoided. Vectorized operations make a big difference

          – user3483203
          Nov 15 '18 at 17:54





          @AlexandreNixon similar in approach, but I just added timings to show why apply should really be avoided. Vectorized operations make a big difference

          – user3483203
          Nov 15 '18 at 17:54













          Fair point @user3483203

          – yatu
          Nov 15 '18 at 19:01





          Fair point @user3483203

          – yatu
          Nov 15 '18 at 19:01


















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Stack Overflow!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53323755%2freshaping-data-frame-and-applying-calculation-for-each-row%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          Bressuire

          Vorschmack

          Quarantine