Scipy curve_fit for Two Dimensions Not Working - Object Too Deep?
I have a 2400 by 2400 array of data which looks something like this:
data = [[-2.302670298082603040e-01 -2.304885241061924717e-01 -2.305029774024092148e-01 -2.304807100897505734e-01 -2.303702531336284665e-01 -2.307144352067780346e-01...
[-2.302670298082603040e-01 -2.304885241061924717e-01 -2.305029774024092148e-01 -2.304807100897505734e-01 -2.303702531336284665e-01 -2.307144352067780346e-01...
...
and I am trying to fit the following 2D Gaussian function:
def Gauss2D(x, mux, muy, sigmax, sigmay, amplitude, offset, rotation):
assert len(x) == 2
X = x[0]
Y = x[1]
A = (np.cos(rotation)**2)/(2*sigmax**2) + (np.sin(rotation)**2)/(2*sigmay**2)
B = (np.sin(rotation*2))/(4*sigmay**2) - (np.sin(2*rotation))/(4*sigmax**2)
C = (np.sin(rotation)**2)/(2*sigmax**2) + (np.cos(rotation)**2)/(2*sigmay**2)
G = amplitude*np.exp(-((A * (X - mux) ** 2) + (2 * B * (X - mux) * (Y - muy)) + (C * (Y - muy) ** 2))) + offset
return G
to this data, using scipy curve_fit. I have therefore defined the domain of the independent variables (coordinates) as follows:
vert = np.arange(2400, dtype=float)
horiz = np.arange(2400, dtype=float)
HORIZ, VERT = np.meshgrid(horiz, vert)
and as an initial estimate of the parameters:
po = np.asarray([1200., 1200., 300., 300., 0.14, 0.22, 0.], dtype=float)
so that I can perform the following fit:
popt, pcov = curve_fit(Gauss2D, (HORIZ, VERT), data, p0=po)
This is returning the following error message, and I haven't the faintest clue why:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
ValueError: object too deep for desired array
---------------------------------------------------------------------------
error Traceback (most recent call last)
<ipython-input-11-ebba75332bfa> in <module>()
----> 1 curve_fit(Gauss2D, (HORIZ, VERT), data, p0=po)
/home/harrythegenius/anaconda3/lib/python3.6/site-packages/scipy/optimize/minpack.py in curve_fit(f, xdata, ydata, p0, sigma, absolute_sigma, check_finite, bounds, method, jac, **kwargs)
734 # Remove full_output from kwargs, otherwise we're passing it in twice.
735 return_full = kwargs.pop('full_output', False)
--> 736 res = leastsq(func, p0, Dfun=jac, full_output=1, **kwargs)
737 popt, pcov, infodict, errmsg, ier = res
738 cost = np.sum(infodict['fvec'] ** 2)
/home/harrythegenius/anaconda3/lib/python3.6/site-packages/scipy/optimize/minpack.py in leastsq(func, x0, args, Dfun, full_output, col_deriv, ftol, xtol, gtol, maxfev, epsfcn, factor, diag)
385 maxfev = 200*(n + 1)
386 retval = _minpack._lmdif(func, x0, args, full_output, ftol, xtol,
--> 387 gtol, maxfev, epsfcn, factor, diag)
388 else:
389 if col_deriv:
error: Result from function call is not a proper array of floats.
I don't understand the message "object too deep for desired array". I have also seen multiple online solutions to this error message, in which one would fix it by ensuring that all data types which were passed to curve_fit were floats, or by checking that the dimensions of the arrays were correct. I have tried both of these approaches, time and time again, but it makes no difference. So what's wrong with this one?
python optimization scipy curve-fitting gaussian
|
show 3 more comments
I have a 2400 by 2400 array of data which looks something like this:
data = [[-2.302670298082603040e-01 -2.304885241061924717e-01 -2.305029774024092148e-01 -2.304807100897505734e-01 -2.303702531336284665e-01 -2.307144352067780346e-01...
[-2.302670298082603040e-01 -2.304885241061924717e-01 -2.305029774024092148e-01 -2.304807100897505734e-01 -2.303702531336284665e-01 -2.307144352067780346e-01...
...
and I am trying to fit the following 2D Gaussian function:
def Gauss2D(x, mux, muy, sigmax, sigmay, amplitude, offset, rotation):
assert len(x) == 2
X = x[0]
Y = x[1]
A = (np.cos(rotation)**2)/(2*sigmax**2) + (np.sin(rotation)**2)/(2*sigmay**2)
B = (np.sin(rotation*2))/(4*sigmay**2) - (np.sin(2*rotation))/(4*sigmax**2)
C = (np.sin(rotation)**2)/(2*sigmax**2) + (np.cos(rotation)**2)/(2*sigmay**2)
G = amplitude*np.exp(-((A * (X - mux) ** 2) + (2 * B * (X - mux) * (Y - muy)) + (C * (Y - muy) ** 2))) + offset
return G
to this data, using scipy curve_fit. I have therefore defined the domain of the independent variables (coordinates) as follows:
vert = np.arange(2400, dtype=float)
horiz = np.arange(2400, dtype=float)
HORIZ, VERT = np.meshgrid(horiz, vert)
and as an initial estimate of the parameters:
po = np.asarray([1200., 1200., 300., 300., 0.14, 0.22, 0.], dtype=float)
so that I can perform the following fit:
popt, pcov = curve_fit(Gauss2D, (HORIZ, VERT), data, p0=po)
This is returning the following error message, and I haven't the faintest clue why:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
ValueError: object too deep for desired array
---------------------------------------------------------------------------
error Traceback (most recent call last)
<ipython-input-11-ebba75332bfa> in <module>()
----> 1 curve_fit(Gauss2D, (HORIZ, VERT), data, p0=po)
/home/harrythegenius/anaconda3/lib/python3.6/site-packages/scipy/optimize/minpack.py in curve_fit(f, xdata, ydata, p0, sigma, absolute_sigma, check_finite, bounds, method, jac, **kwargs)
734 # Remove full_output from kwargs, otherwise we're passing it in twice.
735 return_full = kwargs.pop('full_output', False)
--> 736 res = leastsq(func, p0, Dfun=jac, full_output=1, **kwargs)
737 popt, pcov, infodict, errmsg, ier = res
738 cost = np.sum(infodict['fvec'] ** 2)
/home/harrythegenius/anaconda3/lib/python3.6/site-packages/scipy/optimize/minpack.py in leastsq(func, x0, args, Dfun, full_output, col_deriv, ftol, xtol, gtol, maxfev, epsfcn, factor, diag)
385 maxfev = 200*(n + 1)
386 retval = _minpack._lmdif(func, x0, args, full_output, ftol, xtol,
--> 387 gtol, maxfev, epsfcn, factor, diag)
388 else:
389 if col_deriv:
error: Result from function call is not a proper array of floats.
I don't understand the message "object too deep for desired array". I have also seen multiple online solutions to this error message, in which one would fix it by ensuring that all data types which were passed to curve_fit were floats, or by checking that the dimensions of the arrays were correct. I have tried both of these approaches, time and time again, but it makes no difference. So what's wrong with this one?
python optimization scipy curve-fitting gaussian
Just to be clear, what isdata.shape
anddata.dtype
? You need to show some of that data checking.
– hpaulj
Nov 13 '18 at 16:31
Shape is (2400, 2400).
– Harry Chittenden
Nov 13 '18 at 16:39
dtype is float64
– Harry Chittenden
Nov 13 '18 at 16:39
HORIZ
is a 2d array, (2400,2400). Have you tried calling this with(horiz, vert)
instead?
– hpaulj
Nov 13 '18 at 16:49
1
If you give us a Minimal, Complete, and Verifiable example, something we can copy-n-paste and run, we might be able to help more.
– hpaulj
Nov 13 '18 at 17:10
|
show 3 more comments
I have a 2400 by 2400 array of data which looks something like this:
data = [[-2.302670298082603040e-01 -2.304885241061924717e-01 -2.305029774024092148e-01 -2.304807100897505734e-01 -2.303702531336284665e-01 -2.307144352067780346e-01...
[-2.302670298082603040e-01 -2.304885241061924717e-01 -2.305029774024092148e-01 -2.304807100897505734e-01 -2.303702531336284665e-01 -2.307144352067780346e-01...
...
and I am trying to fit the following 2D Gaussian function:
def Gauss2D(x, mux, muy, sigmax, sigmay, amplitude, offset, rotation):
assert len(x) == 2
X = x[0]
Y = x[1]
A = (np.cos(rotation)**2)/(2*sigmax**2) + (np.sin(rotation)**2)/(2*sigmay**2)
B = (np.sin(rotation*2))/(4*sigmay**2) - (np.sin(2*rotation))/(4*sigmax**2)
C = (np.sin(rotation)**2)/(2*sigmax**2) + (np.cos(rotation)**2)/(2*sigmay**2)
G = amplitude*np.exp(-((A * (X - mux) ** 2) + (2 * B * (X - mux) * (Y - muy)) + (C * (Y - muy) ** 2))) + offset
return G
to this data, using scipy curve_fit. I have therefore defined the domain of the independent variables (coordinates) as follows:
vert = np.arange(2400, dtype=float)
horiz = np.arange(2400, dtype=float)
HORIZ, VERT = np.meshgrid(horiz, vert)
and as an initial estimate of the parameters:
po = np.asarray([1200., 1200., 300., 300., 0.14, 0.22, 0.], dtype=float)
so that I can perform the following fit:
popt, pcov = curve_fit(Gauss2D, (HORIZ, VERT), data, p0=po)
This is returning the following error message, and I haven't the faintest clue why:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
ValueError: object too deep for desired array
---------------------------------------------------------------------------
error Traceback (most recent call last)
<ipython-input-11-ebba75332bfa> in <module>()
----> 1 curve_fit(Gauss2D, (HORIZ, VERT), data, p0=po)
/home/harrythegenius/anaconda3/lib/python3.6/site-packages/scipy/optimize/minpack.py in curve_fit(f, xdata, ydata, p0, sigma, absolute_sigma, check_finite, bounds, method, jac, **kwargs)
734 # Remove full_output from kwargs, otherwise we're passing it in twice.
735 return_full = kwargs.pop('full_output', False)
--> 736 res = leastsq(func, p0, Dfun=jac, full_output=1, **kwargs)
737 popt, pcov, infodict, errmsg, ier = res
738 cost = np.sum(infodict['fvec'] ** 2)
/home/harrythegenius/anaconda3/lib/python3.6/site-packages/scipy/optimize/minpack.py in leastsq(func, x0, args, Dfun, full_output, col_deriv, ftol, xtol, gtol, maxfev, epsfcn, factor, diag)
385 maxfev = 200*(n + 1)
386 retval = _minpack._lmdif(func, x0, args, full_output, ftol, xtol,
--> 387 gtol, maxfev, epsfcn, factor, diag)
388 else:
389 if col_deriv:
error: Result from function call is not a proper array of floats.
I don't understand the message "object too deep for desired array". I have also seen multiple online solutions to this error message, in which one would fix it by ensuring that all data types which were passed to curve_fit were floats, or by checking that the dimensions of the arrays were correct. I have tried both of these approaches, time and time again, but it makes no difference. So what's wrong with this one?
python optimization scipy curve-fitting gaussian
I have a 2400 by 2400 array of data which looks something like this:
data = [[-2.302670298082603040e-01 -2.304885241061924717e-01 -2.305029774024092148e-01 -2.304807100897505734e-01 -2.303702531336284665e-01 -2.307144352067780346e-01...
[-2.302670298082603040e-01 -2.304885241061924717e-01 -2.305029774024092148e-01 -2.304807100897505734e-01 -2.303702531336284665e-01 -2.307144352067780346e-01...
...
and I am trying to fit the following 2D Gaussian function:
def Gauss2D(x, mux, muy, sigmax, sigmay, amplitude, offset, rotation):
assert len(x) == 2
X = x[0]
Y = x[1]
A = (np.cos(rotation)**2)/(2*sigmax**2) + (np.sin(rotation)**2)/(2*sigmay**2)
B = (np.sin(rotation*2))/(4*sigmay**2) - (np.sin(2*rotation))/(4*sigmax**2)
C = (np.sin(rotation)**2)/(2*sigmax**2) + (np.cos(rotation)**2)/(2*sigmay**2)
G = amplitude*np.exp(-((A * (X - mux) ** 2) + (2 * B * (X - mux) * (Y - muy)) + (C * (Y - muy) ** 2))) + offset
return G
to this data, using scipy curve_fit. I have therefore defined the domain of the independent variables (coordinates) as follows:
vert = np.arange(2400, dtype=float)
horiz = np.arange(2400, dtype=float)
HORIZ, VERT = np.meshgrid(horiz, vert)
and as an initial estimate of the parameters:
po = np.asarray([1200., 1200., 300., 300., 0.14, 0.22, 0.], dtype=float)
so that I can perform the following fit:
popt, pcov = curve_fit(Gauss2D, (HORIZ, VERT), data, p0=po)
This is returning the following error message, and I haven't the faintest clue why:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
ValueError: object too deep for desired array
---------------------------------------------------------------------------
error Traceback (most recent call last)
<ipython-input-11-ebba75332bfa> in <module>()
----> 1 curve_fit(Gauss2D, (HORIZ, VERT), data, p0=po)
/home/harrythegenius/anaconda3/lib/python3.6/site-packages/scipy/optimize/minpack.py in curve_fit(f, xdata, ydata, p0, sigma, absolute_sigma, check_finite, bounds, method, jac, **kwargs)
734 # Remove full_output from kwargs, otherwise we're passing it in twice.
735 return_full = kwargs.pop('full_output', False)
--> 736 res = leastsq(func, p0, Dfun=jac, full_output=1, **kwargs)
737 popt, pcov, infodict, errmsg, ier = res
738 cost = np.sum(infodict['fvec'] ** 2)
/home/harrythegenius/anaconda3/lib/python3.6/site-packages/scipy/optimize/minpack.py in leastsq(func, x0, args, Dfun, full_output, col_deriv, ftol, xtol, gtol, maxfev, epsfcn, factor, diag)
385 maxfev = 200*(n + 1)
386 retval = _minpack._lmdif(func, x0, args, full_output, ftol, xtol,
--> 387 gtol, maxfev, epsfcn, factor, diag)
388 else:
389 if col_deriv:
error: Result from function call is not a proper array of floats.
I don't understand the message "object too deep for desired array". I have also seen multiple online solutions to this error message, in which one would fix it by ensuring that all data types which were passed to curve_fit were floats, or by checking that the dimensions of the arrays were correct. I have tried both of these approaches, time and time again, but it makes no difference. So what's wrong with this one?
python optimization scipy curve-fitting gaussian
python optimization scipy curve-fitting gaussian
asked Nov 13 '18 at 15:58
Harry ChittendenHarry Chittenden
62
62
Just to be clear, what isdata.shape
anddata.dtype
? You need to show some of that data checking.
– hpaulj
Nov 13 '18 at 16:31
Shape is (2400, 2400).
– Harry Chittenden
Nov 13 '18 at 16:39
dtype is float64
– Harry Chittenden
Nov 13 '18 at 16:39
HORIZ
is a 2d array, (2400,2400). Have you tried calling this with(horiz, vert)
instead?
– hpaulj
Nov 13 '18 at 16:49
1
If you give us a Minimal, Complete, and Verifiable example, something we can copy-n-paste and run, we might be able to help more.
– hpaulj
Nov 13 '18 at 17:10
|
show 3 more comments
Just to be clear, what isdata.shape
anddata.dtype
? You need to show some of that data checking.
– hpaulj
Nov 13 '18 at 16:31
Shape is (2400, 2400).
– Harry Chittenden
Nov 13 '18 at 16:39
dtype is float64
– Harry Chittenden
Nov 13 '18 at 16:39
HORIZ
is a 2d array, (2400,2400). Have you tried calling this with(horiz, vert)
instead?
– hpaulj
Nov 13 '18 at 16:49
1
If you give us a Minimal, Complete, and Verifiable example, something we can copy-n-paste and run, we might be able to help more.
– hpaulj
Nov 13 '18 at 17:10
Just to be clear, what is
data.shape
and data.dtype
? You need to show some of that data checking.– hpaulj
Nov 13 '18 at 16:31
Just to be clear, what is
data.shape
and data.dtype
? You need to show some of that data checking.– hpaulj
Nov 13 '18 at 16:31
Shape is (2400, 2400).
– Harry Chittenden
Nov 13 '18 at 16:39
Shape is (2400, 2400).
– Harry Chittenden
Nov 13 '18 at 16:39
dtype is float64
– Harry Chittenden
Nov 13 '18 at 16:39
dtype is float64
– Harry Chittenden
Nov 13 '18 at 16:39
HORIZ
is a 2d array, (2400,2400). Have you tried calling this with (horiz, vert)
instead?– hpaulj
Nov 13 '18 at 16:49
HORIZ
is a 2d array, (2400,2400). Have you tried calling this with (horiz, vert)
instead?– hpaulj
Nov 13 '18 at 16:49
1
1
If you give us a Minimal, Complete, and Verifiable example, something we can copy-n-paste and run, we might be able to help more.
– hpaulj
Nov 13 '18 at 17:10
If you give us a Minimal, Complete, and Verifiable example, something we can copy-n-paste and run, we might be able to help more.
– hpaulj
Nov 13 '18 at 17:10
|
show 3 more comments
2 Answers
2
active
oldest
votes
Per the comments, here is a 3D surface fitter using curve_fit() that has 3D scatterplot, 3D surface plot, and contour plot.
import numpy, scipy, scipy.optimize
import matplotlib
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm # to colormap 3D surfaces from blue to red
import matplotlib.pyplot as plt
graphWidth = 800 # units are pixels
graphHeight = 600 # units are pixels
# 3D contour plot lines
numberOfContourLines = 16
def SurfacePlot(func, data, fittedParameters):
f = plt.figure(figsize=(graphWidth/100.0, graphHeight/100.0), dpi=100)
matplotlib.pyplot.grid(True)
axes = Axes3D(f)
x_data = data[0]
y_data = data[1]
z_data = data[2]
xModel = numpy.linspace(min(x_data), max(x_data), 20)
yModel = numpy.linspace(min(y_data), max(y_data), 20)
X, Y = numpy.meshgrid(xModel, yModel)
Z = func(numpy.array([X, Y]), *fittedParameters)
axes.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.coolwarm, linewidth=1, antialiased=True)
axes.scatter(x_data, y_data, z_data) # show data along with plotted surface
axes.set_title('Surface Plot (click-drag with mouse)') # add a title for surface plot
axes.set_xlabel('X Data') # X axis data label
axes.set_ylabel('Y Data') # Y axis data label
axes.set_zlabel('Z Data') # Z axis data label
plt.show()
plt.close('all') # clean up after using pyplot or else thaere can be memory and process problems
def ContourPlot(func, data, fittedParameters):
f = plt.figure(figsize=(graphWidth/100.0, graphHeight/100.0), dpi=100)
axes = f.add_subplot(111)
x_data = data[0]
y_data = data[1]
z_data = data[2]
xModel = numpy.linspace(min(x_data), max(x_data), 20)
yModel = numpy.linspace(min(y_data), max(y_data), 20)
X, Y = numpy.meshgrid(xModel, yModel)
Z = func(numpy.array([X, Y]), *fittedParameters)
axes.plot(x_data, y_data, 'o')
axes.set_title('Contour Plot') # add a title for contour plot
axes.set_xlabel('X Data') # X axis data label
axes.set_ylabel('Y Data') # Y axis data label
CS = matplotlib.pyplot.contour(X, Y, Z, numberOfContourLines, colors='k')
matplotlib.pyplot.clabel(CS, inline=1, fontsize=10) # labels for contours
plt.show()
plt.close('all') # clean up after using pyplot or else thaere can be memory and process problems
def ScatterPlot(data):
f = plt.figure(figsize=(graphWidth/100.0, graphHeight/100.0), dpi=100)
matplotlib.pyplot.grid(True)
axes = Axes3D(f)
x_data = data[0]
y_data = data[1]
z_data = data[2]
axes.scatter(x_data, y_data, z_data)
axes.set_title('Scatter Plot (click-drag with mouse)')
axes.set_xlabel('X Data')
axes.set_ylabel('Y Data')
axes.set_zlabel('Z Data')
plt.show()
plt.close('all') # clean up after using pyplot or else thaere can be memory and process problems
def func(data, a, alpha, beta):
t = data[0]
p_p = data[1]
return a * (t**alpha) * (p_p**beta)
if __name__ == "__main__":
xData = numpy.array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0])
yData = numpy.array([11.0, 12.1, 13.0, 14.1, 15.0, 16.1, 17.0, 18.1, 90.0])
zData = numpy.array([1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7, 8.0, 9.9])
data = [xData, yData, zData]
initialParameters = [1.0, 1.0, 1.0] # these are the same as scipy default values in this example
# here a non-linear surface fit is made with scipy's curve_fit()
fittedParameters, pcov = scipy.optimize.curve_fit(func, [xData, yData], zData, p0 = initialParameters)
ScatterPlot(data)
SurfacePlot(func, data, fittedParameters)
ContourPlot(func, data, fittedParameters)
print('fitted prameters', fittedParameters)
modelPredictions = func(data, *fittedParameters)
absError = modelPredictions - zData
SE = numpy.square(absError) # squared errors
MSE = numpy.mean(SE) # mean squared errors
RMSE = numpy.sqrt(MSE) # Root Mean Squared Error, RMSE
Rsquared = 1.0 - (numpy.var(absError) / numpy.var(zData))
print('RMSE:', RMSE)
print('R-squared:', Rsquared)
add a comment |
OK guys, I've fixed the problem myself. As I suspected, it's a dimensionality issue.
The appropriate dimensions for curve_fit applied to a 2D array are as follows:
Function - One Dimension, which in this case carries the same dimensions as the data set unless enforced
x data - (2, n*m), where n and m are the dimensions of the data array
y data - (n*m)
List of Initial Parameters - A 1D array simply containing all the parameters in the same order as stated in the function
I therefore left my parameter array unchanged, but made the following change to the function:
def Gauss2D(x, mux, muy, sigmax, sigmay, amplitude, offset, rotation):
assert len(x) == 2
X = x[0]
Y = x[1]
A = (np.cos(rotation)**2)/(2*sigmax**2) + (np.sin(rotation)**2)/(2*sigmay**2)
B = (np.sin(rotation*2))/(4*sigmay**2) - (np.sin(2*rotation))/(4*sigmax**2)
C = (np.sin(rotation)**2)/(2*sigmax**2) + (np.cos(rotation)**2)/(2*sigmay**2)
G = amplitude*np.exp(-((A * (X - mux) ** 2) + (2 * B * (X - mux) * (Y - muy)) + (C * (Y - muy) ** 2))) + offset
return G.ravel()
and I passed the following to the x data argument:
x = np.vstack((HORIZ.ravel(), VERT.ravel()))
and this to the y data argument:
y = data.ravel()
Thus, I optimised it using:
curve_fit(Gauss2D, x, y, po)
which works just fine.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53284842%2fscipy-curve-fit-for-two-dimensions-not-working-object-too-deep%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
Per the comments, here is a 3D surface fitter using curve_fit() that has 3D scatterplot, 3D surface plot, and contour plot.
import numpy, scipy, scipy.optimize
import matplotlib
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm # to colormap 3D surfaces from blue to red
import matplotlib.pyplot as plt
graphWidth = 800 # units are pixels
graphHeight = 600 # units are pixels
# 3D contour plot lines
numberOfContourLines = 16
def SurfacePlot(func, data, fittedParameters):
f = plt.figure(figsize=(graphWidth/100.0, graphHeight/100.0), dpi=100)
matplotlib.pyplot.grid(True)
axes = Axes3D(f)
x_data = data[0]
y_data = data[1]
z_data = data[2]
xModel = numpy.linspace(min(x_data), max(x_data), 20)
yModel = numpy.linspace(min(y_data), max(y_data), 20)
X, Y = numpy.meshgrid(xModel, yModel)
Z = func(numpy.array([X, Y]), *fittedParameters)
axes.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.coolwarm, linewidth=1, antialiased=True)
axes.scatter(x_data, y_data, z_data) # show data along with plotted surface
axes.set_title('Surface Plot (click-drag with mouse)') # add a title for surface plot
axes.set_xlabel('X Data') # X axis data label
axes.set_ylabel('Y Data') # Y axis data label
axes.set_zlabel('Z Data') # Z axis data label
plt.show()
plt.close('all') # clean up after using pyplot or else thaere can be memory and process problems
def ContourPlot(func, data, fittedParameters):
f = plt.figure(figsize=(graphWidth/100.0, graphHeight/100.0), dpi=100)
axes = f.add_subplot(111)
x_data = data[0]
y_data = data[1]
z_data = data[2]
xModel = numpy.linspace(min(x_data), max(x_data), 20)
yModel = numpy.linspace(min(y_data), max(y_data), 20)
X, Y = numpy.meshgrid(xModel, yModel)
Z = func(numpy.array([X, Y]), *fittedParameters)
axes.plot(x_data, y_data, 'o')
axes.set_title('Contour Plot') # add a title for contour plot
axes.set_xlabel('X Data') # X axis data label
axes.set_ylabel('Y Data') # Y axis data label
CS = matplotlib.pyplot.contour(X, Y, Z, numberOfContourLines, colors='k')
matplotlib.pyplot.clabel(CS, inline=1, fontsize=10) # labels for contours
plt.show()
plt.close('all') # clean up after using pyplot or else thaere can be memory and process problems
def ScatterPlot(data):
f = plt.figure(figsize=(graphWidth/100.0, graphHeight/100.0), dpi=100)
matplotlib.pyplot.grid(True)
axes = Axes3D(f)
x_data = data[0]
y_data = data[1]
z_data = data[2]
axes.scatter(x_data, y_data, z_data)
axes.set_title('Scatter Plot (click-drag with mouse)')
axes.set_xlabel('X Data')
axes.set_ylabel('Y Data')
axes.set_zlabel('Z Data')
plt.show()
plt.close('all') # clean up after using pyplot or else thaere can be memory and process problems
def func(data, a, alpha, beta):
t = data[0]
p_p = data[1]
return a * (t**alpha) * (p_p**beta)
if __name__ == "__main__":
xData = numpy.array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0])
yData = numpy.array([11.0, 12.1, 13.0, 14.1, 15.0, 16.1, 17.0, 18.1, 90.0])
zData = numpy.array([1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7, 8.0, 9.9])
data = [xData, yData, zData]
initialParameters = [1.0, 1.0, 1.0] # these are the same as scipy default values in this example
# here a non-linear surface fit is made with scipy's curve_fit()
fittedParameters, pcov = scipy.optimize.curve_fit(func, [xData, yData], zData, p0 = initialParameters)
ScatterPlot(data)
SurfacePlot(func, data, fittedParameters)
ContourPlot(func, data, fittedParameters)
print('fitted prameters', fittedParameters)
modelPredictions = func(data, *fittedParameters)
absError = modelPredictions - zData
SE = numpy.square(absError) # squared errors
MSE = numpy.mean(SE) # mean squared errors
RMSE = numpy.sqrt(MSE) # Root Mean Squared Error, RMSE
Rsquared = 1.0 - (numpy.var(absError) / numpy.var(zData))
print('RMSE:', RMSE)
print('R-squared:', Rsquared)
add a comment |
Per the comments, here is a 3D surface fitter using curve_fit() that has 3D scatterplot, 3D surface plot, and contour plot.
import numpy, scipy, scipy.optimize
import matplotlib
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm # to colormap 3D surfaces from blue to red
import matplotlib.pyplot as plt
graphWidth = 800 # units are pixels
graphHeight = 600 # units are pixels
# 3D contour plot lines
numberOfContourLines = 16
def SurfacePlot(func, data, fittedParameters):
f = plt.figure(figsize=(graphWidth/100.0, graphHeight/100.0), dpi=100)
matplotlib.pyplot.grid(True)
axes = Axes3D(f)
x_data = data[0]
y_data = data[1]
z_data = data[2]
xModel = numpy.linspace(min(x_data), max(x_data), 20)
yModel = numpy.linspace(min(y_data), max(y_data), 20)
X, Y = numpy.meshgrid(xModel, yModel)
Z = func(numpy.array([X, Y]), *fittedParameters)
axes.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.coolwarm, linewidth=1, antialiased=True)
axes.scatter(x_data, y_data, z_data) # show data along with plotted surface
axes.set_title('Surface Plot (click-drag with mouse)') # add a title for surface plot
axes.set_xlabel('X Data') # X axis data label
axes.set_ylabel('Y Data') # Y axis data label
axes.set_zlabel('Z Data') # Z axis data label
plt.show()
plt.close('all') # clean up after using pyplot or else thaere can be memory and process problems
def ContourPlot(func, data, fittedParameters):
f = plt.figure(figsize=(graphWidth/100.0, graphHeight/100.0), dpi=100)
axes = f.add_subplot(111)
x_data = data[0]
y_data = data[1]
z_data = data[2]
xModel = numpy.linspace(min(x_data), max(x_data), 20)
yModel = numpy.linspace(min(y_data), max(y_data), 20)
X, Y = numpy.meshgrid(xModel, yModel)
Z = func(numpy.array([X, Y]), *fittedParameters)
axes.plot(x_data, y_data, 'o')
axes.set_title('Contour Plot') # add a title for contour plot
axes.set_xlabel('X Data') # X axis data label
axes.set_ylabel('Y Data') # Y axis data label
CS = matplotlib.pyplot.contour(X, Y, Z, numberOfContourLines, colors='k')
matplotlib.pyplot.clabel(CS, inline=1, fontsize=10) # labels for contours
plt.show()
plt.close('all') # clean up after using pyplot or else thaere can be memory and process problems
def ScatterPlot(data):
f = plt.figure(figsize=(graphWidth/100.0, graphHeight/100.0), dpi=100)
matplotlib.pyplot.grid(True)
axes = Axes3D(f)
x_data = data[0]
y_data = data[1]
z_data = data[2]
axes.scatter(x_data, y_data, z_data)
axes.set_title('Scatter Plot (click-drag with mouse)')
axes.set_xlabel('X Data')
axes.set_ylabel('Y Data')
axes.set_zlabel('Z Data')
plt.show()
plt.close('all') # clean up after using pyplot or else thaere can be memory and process problems
def func(data, a, alpha, beta):
t = data[0]
p_p = data[1]
return a * (t**alpha) * (p_p**beta)
if __name__ == "__main__":
xData = numpy.array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0])
yData = numpy.array([11.0, 12.1, 13.0, 14.1, 15.0, 16.1, 17.0, 18.1, 90.0])
zData = numpy.array([1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7, 8.0, 9.9])
data = [xData, yData, zData]
initialParameters = [1.0, 1.0, 1.0] # these are the same as scipy default values in this example
# here a non-linear surface fit is made with scipy's curve_fit()
fittedParameters, pcov = scipy.optimize.curve_fit(func, [xData, yData], zData, p0 = initialParameters)
ScatterPlot(data)
SurfacePlot(func, data, fittedParameters)
ContourPlot(func, data, fittedParameters)
print('fitted prameters', fittedParameters)
modelPredictions = func(data, *fittedParameters)
absError = modelPredictions - zData
SE = numpy.square(absError) # squared errors
MSE = numpy.mean(SE) # mean squared errors
RMSE = numpy.sqrt(MSE) # Root Mean Squared Error, RMSE
Rsquared = 1.0 - (numpy.var(absError) / numpy.var(zData))
print('RMSE:', RMSE)
print('R-squared:', Rsquared)
add a comment |
Per the comments, here is a 3D surface fitter using curve_fit() that has 3D scatterplot, 3D surface plot, and contour plot.
import numpy, scipy, scipy.optimize
import matplotlib
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm # to colormap 3D surfaces from blue to red
import matplotlib.pyplot as plt
graphWidth = 800 # units are pixels
graphHeight = 600 # units are pixels
# 3D contour plot lines
numberOfContourLines = 16
def SurfacePlot(func, data, fittedParameters):
f = plt.figure(figsize=(graphWidth/100.0, graphHeight/100.0), dpi=100)
matplotlib.pyplot.grid(True)
axes = Axes3D(f)
x_data = data[0]
y_data = data[1]
z_data = data[2]
xModel = numpy.linspace(min(x_data), max(x_data), 20)
yModel = numpy.linspace(min(y_data), max(y_data), 20)
X, Y = numpy.meshgrid(xModel, yModel)
Z = func(numpy.array([X, Y]), *fittedParameters)
axes.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.coolwarm, linewidth=1, antialiased=True)
axes.scatter(x_data, y_data, z_data) # show data along with plotted surface
axes.set_title('Surface Plot (click-drag with mouse)') # add a title for surface plot
axes.set_xlabel('X Data') # X axis data label
axes.set_ylabel('Y Data') # Y axis data label
axes.set_zlabel('Z Data') # Z axis data label
plt.show()
plt.close('all') # clean up after using pyplot or else thaere can be memory and process problems
def ContourPlot(func, data, fittedParameters):
f = plt.figure(figsize=(graphWidth/100.0, graphHeight/100.0), dpi=100)
axes = f.add_subplot(111)
x_data = data[0]
y_data = data[1]
z_data = data[2]
xModel = numpy.linspace(min(x_data), max(x_data), 20)
yModel = numpy.linspace(min(y_data), max(y_data), 20)
X, Y = numpy.meshgrid(xModel, yModel)
Z = func(numpy.array([X, Y]), *fittedParameters)
axes.plot(x_data, y_data, 'o')
axes.set_title('Contour Plot') # add a title for contour plot
axes.set_xlabel('X Data') # X axis data label
axes.set_ylabel('Y Data') # Y axis data label
CS = matplotlib.pyplot.contour(X, Y, Z, numberOfContourLines, colors='k')
matplotlib.pyplot.clabel(CS, inline=1, fontsize=10) # labels for contours
plt.show()
plt.close('all') # clean up after using pyplot or else thaere can be memory and process problems
def ScatterPlot(data):
f = plt.figure(figsize=(graphWidth/100.0, graphHeight/100.0), dpi=100)
matplotlib.pyplot.grid(True)
axes = Axes3D(f)
x_data = data[0]
y_data = data[1]
z_data = data[2]
axes.scatter(x_data, y_data, z_data)
axes.set_title('Scatter Plot (click-drag with mouse)')
axes.set_xlabel('X Data')
axes.set_ylabel('Y Data')
axes.set_zlabel('Z Data')
plt.show()
plt.close('all') # clean up after using pyplot or else thaere can be memory and process problems
def func(data, a, alpha, beta):
t = data[0]
p_p = data[1]
return a * (t**alpha) * (p_p**beta)
if __name__ == "__main__":
xData = numpy.array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0])
yData = numpy.array([11.0, 12.1, 13.0, 14.1, 15.0, 16.1, 17.0, 18.1, 90.0])
zData = numpy.array([1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7, 8.0, 9.9])
data = [xData, yData, zData]
initialParameters = [1.0, 1.0, 1.0] # these are the same as scipy default values in this example
# here a non-linear surface fit is made with scipy's curve_fit()
fittedParameters, pcov = scipy.optimize.curve_fit(func, [xData, yData], zData, p0 = initialParameters)
ScatterPlot(data)
SurfacePlot(func, data, fittedParameters)
ContourPlot(func, data, fittedParameters)
print('fitted prameters', fittedParameters)
modelPredictions = func(data, *fittedParameters)
absError = modelPredictions - zData
SE = numpy.square(absError) # squared errors
MSE = numpy.mean(SE) # mean squared errors
RMSE = numpy.sqrt(MSE) # Root Mean Squared Error, RMSE
Rsquared = 1.0 - (numpy.var(absError) / numpy.var(zData))
print('RMSE:', RMSE)
print('R-squared:', Rsquared)
Per the comments, here is a 3D surface fitter using curve_fit() that has 3D scatterplot, 3D surface plot, and contour plot.
import numpy, scipy, scipy.optimize
import matplotlib
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm # to colormap 3D surfaces from blue to red
import matplotlib.pyplot as plt
graphWidth = 800 # units are pixels
graphHeight = 600 # units are pixels
# 3D contour plot lines
numberOfContourLines = 16
def SurfacePlot(func, data, fittedParameters):
f = plt.figure(figsize=(graphWidth/100.0, graphHeight/100.0), dpi=100)
matplotlib.pyplot.grid(True)
axes = Axes3D(f)
x_data = data[0]
y_data = data[1]
z_data = data[2]
xModel = numpy.linspace(min(x_data), max(x_data), 20)
yModel = numpy.linspace(min(y_data), max(y_data), 20)
X, Y = numpy.meshgrid(xModel, yModel)
Z = func(numpy.array([X, Y]), *fittedParameters)
axes.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.coolwarm, linewidth=1, antialiased=True)
axes.scatter(x_data, y_data, z_data) # show data along with plotted surface
axes.set_title('Surface Plot (click-drag with mouse)') # add a title for surface plot
axes.set_xlabel('X Data') # X axis data label
axes.set_ylabel('Y Data') # Y axis data label
axes.set_zlabel('Z Data') # Z axis data label
plt.show()
plt.close('all') # clean up after using pyplot or else thaere can be memory and process problems
def ContourPlot(func, data, fittedParameters):
f = plt.figure(figsize=(graphWidth/100.0, graphHeight/100.0), dpi=100)
axes = f.add_subplot(111)
x_data = data[0]
y_data = data[1]
z_data = data[2]
xModel = numpy.linspace(min(x_data), max(x_data), 20)
yModel = numpy.linspace(min(y_data), max(y_data), 20)
X, Y = numpy.meshgrid(xModel, yModel)
Z = func(numpy.array([X, Y]), *fittedParameters)
axes.plot(x_data, y_data, 'o')
axes.set_title('Contour Plot') # add a title for contour plot
axes.set_xlabel('X Data') # X axis data label
axes.set_ylabel('Y Data') # Y axis data label
CS = matplotlib.pyplot.contour(X, Y, Z, numberOfContourLines, colors='k')
matplotlib.pyplot.clabel(CS, inline=1, fontsize=10) # labels for contours
plt.show()
plt.close('all') # clean up after using pyplot or else thaere can be memory and process problems
def ScatterPlot(data):
f = plt.figure(figsize=(graphWidth/100.0, graphHeight/100.0), dpi=100)
matplotlib.pyplot.grid(True)
axes = Axes3D(f)
x_data = data[0]
y_data = data[1]
z_data = data[2]
axes.scatter(x_data, y_data, z_data)
axes.set_title('Scatter Plot (click-drag with mouse)')
axes.set_xlabel('X Data')
axes.set_ylabel('Y Data')
axes.set_zlabel('Z Data')
plt.show()
plt.close('all') # clean up after using pyplot or else thaere can be memory and process problems
def func(data, a, alpha, beta):
t = data[0]
p_p = data[1]
return a * (t**alpha) * (p_p**beta)
if __name__ == "__main__":
xData = numpy.array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0])
yData = numpy.array([11.0, 12.1, 13.0, 14.1, 15.0, 16.1, 17.0, 18.1, 90.0])
zData = numpy.array([1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7, 8.0, 9.9])
data = [xData, yData, zData]
initialParameters = [1.0, 1.0, 1.0] # these are the same as scipy default values in this example
# here a non-linear surface fit is made with scipy's curve_fit()
fittedParameters, pcov = scipy.optimize.curve_fit(func, [xData, yData], zData, p0 = initialParameters)
ScatterPlot(data)
SurfacePlot(func, data, fittedParameters)
ContourPlot(func, data, fittedParameters)
print('fitted prameters', fittedParameters)
modelPredictions = func(data, *fittedParameters)
absError = modelPredictions - zData
SE = numpy.square(absError) # squared errors
MSE = numpy.mean(SE) # mean squared errors
RMSE = numpy.sqrt(MSE) # Root Mean Squared Error, RMSE
Rsquared = 1.0 - (numpy.var(absError) / numpy.var(zData))
print('RMSE:', RMSE)
print('R-squared:', Rsquared)
answered Nov 13 '18 at 23:42
James PhillipsJames Phillips
1,444387
1,444387
add a comment |
add a comment |
OK guys, I've fixed the problem myself. As I suspected, it's a dimensionality issue.
The appropriate dimensions for curve_fit applied to a 2D array are as follows:
Function - One Dimension, which in this case carries the same dimensions as the data set unless enforced
x data - (2, n*m), where n and m are the dimensions of the data array
y data - (n*m)
List of Initial Parameters - A 1D array simply containing all the parameters in the same order as stated in the function
I therefore left my parameter array unchanged, but made the following change to the function:
def Gauss2D(x, mux, muy, sigmax, sigmay, amplitude, offset, rotation):
assert len(x) == 2
X = x[0]
Y = x[1]
A = (np.cos(rotation)**2)/(2*sigmax**2) + (np.sin(rotation)**2)/(2*sigmay**2)
B = (np.sin(rotation*2))/(4*sigmay**2) - (np.sin(2*rotation))/(4*sigmax**2)
C = (np.sin(rotation)**2)/(2*sigmax**2) + (np.cos(rotation)**2)/(2*sigmay**2)
G = amplitude*np.exp(-((A * (X - mux) ** 2) + (2 * B * (X - mux) * (Y - muy)) + (C * (Y - muy) ** 2))) + offset
return G.ravel()
and I passed the following to the x data argument:
x = np.vstack((HORIZ.ravel(), VERT.ravel()))
and this to the y data argument:
y = data.ravel()
Thus, I optimised it using:
curve_fit(Gauss2D, x, y, po)
which works just fine.
add a comment |
OK guys, I've fixed the problem myself. As I suspected, it's a dimensionality issue.
The appropriate dimensions for curve_fit applied to a 2D array are as follows:
Function - One Dimension, which in this case carries the same dimensions as the data set unless enforced
x data - (2, n*m), where n and m are the dimensions of the data array
y data - (n*m)
List of Initial Parameters - A 1D array simply containing all the parameters in the same order as stated in the function
I therefore left my parameter array unchanged, but made the following change to the function:
def Gauss2D(x, mux, muy, sigmax, sigmay, amplitude, offset, rotation):
assert len(x) == 2
X = x[0]
Y = x[1]
A = (np.cos(rotation)**2)/(2*sigmax**2) + (np.sin(rotation)**2)/(2*sigmay**2)
B = (np.sin(rotation*2))/(4*sigmay**2) - (np.sin(2*rotation))/(4*sigmax**2)
C = (np.sin(rotation)**2)/(2*sigmax**2) + (np.cos(rotation)**2)/(2*sigmay**2)
G = amplitude*np.exp(-((A * (X - mux) ** 2) + (2 * B * (X - mux) * (Y - muy)) + (C * (Y - muy) ** 2))) + offset
return G.ravel()
and I passed the following to the x data argument:
x = np.vstack((HORIZ.ravel(), VERT.ravel()))
and this to the y data argument:
y = data.ravel()
Thus, I optimised it using:
curve_fit(Gauss2D, x, y, po)
which works just fine.
add a comment |
OK guys, I've fixed the problem myself. As I suspected, it's a dimensionality issue.
The appropriate dimensions for curve_fit applied to a 2D array are as follows:
Function - One Dimension, which in this case carries the same dimensions as the data set unless enforced
x data - (2, n*m), where n and m are the dimensions of the data array
y data - (n*m)
List of Initial Parameters - A 1D array simply containing all the parameters in the same order as stated in the function
I therefore left my parameter array unchanged, but made the following change to the function:
def Gauss2D(x, mux, muy, sigmax, sigmay, amplitude, offset, rotation):
assert len(x) == 2
X = x[0]
Y = x[1]
A = (np.cos(rotation)**2)/(2*sigmax**2) + (np.sin(rotation)**2)/(2*sigmay**2)
B = (np.sin(rotation*2))/(4*sigmay**2) - (np.sin(2*rotation))/(4*sigmax**2)
C = (np.sin(rotation)**2)/(2*sigmax**2) + (np.cos(rotation)**2)/(2*sigmay**2)
G = amplitude*np.exp(-((A * (X - mux) ** 2) + (2 * B * (X - mux) * (Y - muy)) + (C * (Y - muy) ** 2))) + offset
return G.ravel()
and I passed the following to the x data argument:
x = np.vstack((HORIZ.ravel(), VERT.ravel()))
and this to the y data argument:
y = data.ravel()
Thus, I optimised it using:
curve_fit(Gauss2D, x, y, po)
which works just fine.
OK guys, I've fixed the problem myself. As I suspected, it's a dimensionality issue.
The appropriate dimensions for curve_fit applied to a 2D array are as follows:
Function - One Dimension, which in this case carries the same dimensions as the data set unless enforced
x data - (2, n*m), where n and m are the dimensions of the data array
y data - (n*m)
List of Initial Parameters - A 1D array simply containing all the parameters in the same order as stated in the function
I therefore left my parameter array unchanged, but made the following change to the function:
def Gauss2D(x, mux, muy, sigmax, sigmay, amplitude, offset, rotation):
assert len(x) == 2
X = x[0]
Y = x[1]
A = (np.cos(rotation)**2)/(2*sigmax**2) + (np.sin(rotation)**2)/(2*sigmay**2)
B = (np.sin(rotation*2))/(4*sigmay**2) - (np.sin(2*rotation))/(4*sigmax**2)
C = (np.sin(rotation)**2)/(2*sigmax**2) + (np.cos(rotation)**2)/(2*sigmay**2)
G = amplitude*np.exp(-((A * (X - mux) ** 2) + (2 * B * (X - mux) * (Y - muy)) + (C * (Y - muy) ** 2))) + offset
return G.ravel()
and I passed the following to the x data argument:
x = np.vstack((HORIZ.ravel(), VERT.ravel()))
and this to the y data argument:
y = data.ravel()
Thus, I optimised it using:
curve_fit(Gauss2D, x, y, po)
which works just fine.
answered Nov 14 '18 at 12:19
Harry ChittendenHarry Chittenden
62
62
add a comment |
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53284842%2fscipy-curve-fit-for-two-dimensions-not-working-object-too-deep%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Just to be clear, what is
data.shape
anddata.dtype
? You need to show some of that data checking.– hpaulj
Nov 13 '18 at 16:31
Shape is (2400, 2400).
– Harry Chittenden
Nov 13 '18 at 16:39
dtype is float64
– Harry Chittenden
Nov 13 '18 at 16:39
HORIZ
is a 2d array, (2400,2400). Have you tried calling this with(horiz, vert)
instead?– hpaulj
Nov 13 '18 at 16:49
1
If you give us a Minimal, Complete, and Verifiable example, something we can copy-n-paste and run, we might be able to help more.
– hpaulj
Nov 13 '18 at 17:10