How to visualize 3D delaunay triangulation in Python?












3















I have a set of 3D points which I've used scipy.spatial.Delaunay to do the triangulation / tetrahedralization. I now have a set of unique faces of all of the tetrahedra, and would like to visualize these in 3D.



Are there any Python libraries (or libraries with a Python wrapper) that can do this?










share|improve this question























  • Have you tried to do it using any of these libraries that you tagged? If so, can you show us what you have tried so far?

    – aestrivex
    Nov 18 '13 at 20:14
















3















I have a set of 3D points which I've used scipy.spatial.Delaunay to do the triangulation / tetrahedralization. I now have a set of unique faces of all of the tetrahedra, and would like to visualize these in 3D.



Are there any Python libraries (or libraries with a Python wrapper) that can do this?










share|improve this question























  • Have you tried to do it using any of these libraries that you tagged? If so, can you show us what you have tried so far?

    – aestrivex
    Nov 18 '13 at 20:14














3












3








3


1






I have a set of 3D points which I've used scipy.spatial.Delaunay to do the triangulation / tetrahedralization. I now have a set of unique faces of all of the tetrahedra, and would like to visualize these in 3D.



Are there any Python libraries (or libraries with a Python wrapper) that can do this?










share|improve this question














I have a set of 3D points which I've used scipy.spatial.Delaunay to do the triangulation / tetrahedralization. I now have a set of unique faces of all of the tetrahedra, and would like to visualize these in 3D.



Are there any Python libraries (or libraries with a Python wrapper) that can do this?







python scipy vtk mayavi mplot3d






share|improve this question













share|improve this question











share|improve this question




share|improve this question










asked Nov 17 '13 at 0:42









bardbard

99021537




99021537













  • Have you tried to do it using any of these libraries that you tagged? If so, can you show us what you have tried so far?

    – aestrivex
    Nov 18 '13 at 20:14



















  • Have you tried to do it using any of these libraries that you tagged? If so, can you show us what you have tried so far?

    – aestrivex
    Nov 18 '13 at 20:14

















Have you tried to do it using any of these libraries that you tagged? If so, can you show us what you have tried so far?

– aestrivex
Nov 18 '13 at 20:14





Have you tried to do it using any of these libraries that you tagged? If so, can you show us what you have tried so far?

– aestrivex
Nov 18 '13 at 20:14












2 Answers
2






active

oldest

votes


















4














Try mayavi.mlab.triangular_mesh()



import numpy as np
from mayavi import mlab
vertices = np.array([[0, 1, 0, 0],[0, 0, 1, 0],[0, 0, 0, 1]])
faces = np.array([[0, 1, 0, 0],[1, 2, 1, 2],[2, 3, 3, 3]])
mlab.triangular_mesh(vertices[0,:], vertices[1,:], vertices[2,:], faces.T)
mlab.show()





share|improve this answer

































    0














    It can also be done using the three-dimensional plotting of matplotlib (without the need for the mayavi package).



    The following code is an initial simple implementation of such a function.



    import numpy as np
    import matplotlib.pyplot as plt
    from mpl_toolkits import mplot3d
    from scipy.spatial import Delaunay

    def plot_tri_simple(ax, points, tri):
    for tr in tri.simplices:
    pts = points[tr, :]
    ax.plot3D(pts[[0,1],0], pts[[0,1],1], pts[[0,1],2], color='g', lw='0.1')
    ax.plot3D(pts[[0,2],0], pts[[0,2],1], pts[[0,2],2], color='g', lw='0.1')
    ax.plot3D(pts[[0,3],0], pts[[0,3],1], pts[[0,3],2], color='g', lw='0.1')
    ax.plot3D(pts[[1,2],0], pts[[1,2],1], pts[[1,2],2], color='g', lw='0.1')
    ax.plot3D(pts[[1,3],0], pts[[1,3],1], pts[[1,3],2], color='g', lw='0.1')
    ax.plot3D(pts[[2,3],0], pts[[2,3],1], pts[[2,3],2], color='g', lw='0.1')

    ax.scatter(points[:,0], points[:,1], points[:,2], color='b')


    The result of calling this function with the test code below results in the following figure:
    enter image description here



    np.random.seed(0)
    x = 2.0 * np.random.rand(20) - 1.0
    y = 2.0 * np.random.rand(20) - 1.0
    z = 2.0 * np.random.rand(20) - 1.0
    points = np.vstack([x, y, z]).T
    tri = Delaunay(points)

    fig = plt.figure()
    ax = plt.axes(projection='3d')
    plot_tri(ax, points, tri)


    The code above is slow because the plot is done within the loop. Furthermore, it works on each simplex separately so edges are rendered more than once.
    A more efficient implementation follows, which makes use of an auxiliary function collect_edges to take each edge only once, and uses np.nan values in the plot function to draw the edge segments in a single plot command.



    The result of running the test code above with the new function gives an identical figure but the running time is improved by a factor of x80 on my machine (300 ms compared to 3.6 ms).



    def plot_tri_2(ax, points, tri):
    edges = collect_edges(tri)
    x = np.array()
    y = np.array()
    z = np.array()
    for (i,j) in edges:
    x = np.append(x, [points[i, 0], points[j, 0], np.nan])
    y = np.append(y, [points[i, 1], points[j, 1], np.nan])
    z = np.append(z, [points[i, 2], points[j, 2], np.nan])
    ax.plot3D(x, y, z, color='g', lw='0.1')

    ax.scatter(points[:,0], points[:,1], points[:,2], color='b')


    def collect_edges(tri):
    edges = set()

    def sorted_tuple(a,b):
    return (a,b) if a < b else (b,a)
    # Add edges of tetrahedron (sorted so we don't add an edge twice, even if it comes in reverse order).
    for (i0, i1, i2, i3) in tri.simplices:
    edges.add(sorted_tuple(i0,i1))
    edges.add(sorted_tuple(i0,i2))
    edges.add(sorted_tuple(i0,i3))
    edges.add(sorted_tuple(i1,i2))
    edges.add(sorted_tuple(i1,i3))
    edges.add(sorted_tuple(i2,i3))
    return edges





    share|improve this answer

























      Your Answer






      StackExchange.ifUsing("editor", function () {
      StackExchange.using("externalEditor", function () {
      StackExchange.using("snippets", function () {
      StackExchange.snippets.init();
      });
      });
      }, "code-snippets");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "1"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      autoActivateHeartbeat: false,
      convertImagesToLinks: true,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: 10,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f20025784%2fhow-to-visualize-3d-delaunay-triangulation-in-python%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes









      4














      Try mayavi.mlab.triangular_mesh()



      import numpy as np
      from mayavi import mlab
      vertices = np.array([[0, 1, 0, 0],[0, 0, 1, 0],[0, 0, 0, 1]])
      faces = np.array([[0, 1, 0, 0],[1, 2, 1, 2],[2, 3, 3, 3]])
      mlab.triangular_mesh(vertices[0,:], vertices[1,:], vertices[2,:], faces.T)
      mlab.show()





      share|improve this answer






























        4














        Try mayavi.mlab.triangular_mesh()



        import numpy as np
        from mayavi import mlab
        vertices = np.array([[0, 1, 0, 0],[0, 0, 1, 0],[0, 0, 0, 1]])
        faces = np.array([[0, 1, 0, 0],[1, 2, 1, 2],[2, 3, 3, 3]])
        mlab.triangular_mesh(vertices[0,:], vertices[1,:], vertices[2,:], faces.T)
        mlab.show()





        share|improve this answer




























          4












          4








          4







          Try mayavi.mlab.triangular_mesh()



          import numpy as np
          from mayavi import mlab
          vertices = np.array([[0, 1, 0, 0],[0, 0, 1, 0],[0, 0, 0, 1]])
          faces = np.array([[0, 1, 0, 0],[1, 2, 1, 2],[2, 3, 3, 3]])
          mlab.triangular_mesh(vertices[0,:], vertices[1,:], vertices[2,:], faces.T)
          mlab.show()





          share|improve this answer















          Try mayavi.mlab.triangular_mesh()



          import numpy as np
          from mayavi import mlab
          vertices = np.array([[0, 1, 0, 0],[0, 0, 1, 0],[0, 0, 0, 1]])
          faces = np.array([[0, 1, 0, 0],[1, 2, 1, 2],[2, 3, 3, 3]])
          mlab.triangular_mesh(vertices[0,:], vertices[1,:], vertices[2,:], faces.T)
          mlab.show()






          share|improve this answer














          share|improve this answer



          share|improve this answer








          edited Dec 22 '13 at 8:25









          Baby Groot

          3,984104465




          3,984104465










          answered Dec 22 '13 at 8:08









          nullasnullas

          1514




          1514

























              0














              It can also be done using the three-dimensional plotting of matplotlib (without the need for the mayavi package).



              The following code is an initial simple implementation of such a function.



              import numpy as np
              import matplotlib.pyplot as plt
              from mpl_toolkits import mplot3d
              from scipy.spatial import Delaunay

              def plot_tri_simple(ax, points, tri):
              for tr in tri.simplices:
              pts = points[tr, :]
              ax.plot3D(pts[[0,1],0], pts[[0,1],1], pts[[0,1],2], color='g', lw='0.1')
              ax.plot3D(pts[[0,2],0], pts[[0,2],1], pts[[0,2],2], color='g', lw='0.1')
              ax.plot3D(pts[[0,3],0], pts[[0,3],1], pts[[0,3],2], color='g', lw='0.1')
              ax.plot3D(pts[[1,2],0], pts[[1,2],1], pts[[1,2],2], color='g', lw='0.1')
              ax.plot3D(pts[[1,3],0], pts[[1,3],1], pts[[1,3],2], color='g', lw='0.1')
              ax.plot3D(pts[[2,3],0], pts[[2,3],1], pts[[2,3],2], color='g', lw='0.1')

              ax.scatter(points[:,0], points[:,1], points[:,2], color='b')


              The result of calling this function with the test code below results in the following figure:
              enter image description here



              np.random.seed(0)
              x = 2.0 * np.random.rand(20) - 1.0
              y = 2.0 * np.random.rand(20) - 1.0
              z = 2.0 * np.random.rand(20) - 1.0
              points = np.vstack([x, y, z]).T
              tri = Delaunay(points)

              fig = plt.figure()
              ax = plt.axes(projection='3d')
              plot_tri(ax, points, tri)


              The code above is slow because the plot is done within the loop. Furthermore, it works on each simplex separately so edges are rendered more than once.
              A more efficient implementation follows, which makes use of an auxiliary function collect_edges to take each edge only once, and uses np.nan values in the plot function to draw the edge segments in a single plot command.



              The result of running the test code above with the new function gives an identical figure but the running time is improved by a factor of x80 on my machine (300 ms compared to 3.6 ms).



              def plot_tri_2(ax, points, tri):
              edges = collect_edges(tri)
              x = np.array()
              y = np.array()
              z = np.array()
              for (i,j) in edges:
              x = np.append(x, [points[i, 0], points[j, 0], np.nan])
              y = np.append(y, [points[i, 1], points[j, 1], np.nan])
              z = np.append(z, [points[i, 2], points[j, 2], np.nan])
              ax.plot3D(x, y, z, color='g', lw='0.1')

              ax.scatter(points[:,0], points[:,1], points[:,2], color='b')


              def collect_edges(tri):
              edges = set()

              def sorted_tuple(a,b):
              return (a,b) if a < b else (b,a)
              # Add edges of tetrahedron (sorted so we don't add an edge twice, even if it comes in reverse order).
              for (i0, i1, i2, i3) in tri.simplices:
              edges.add(sorted_tuple(i0,i1))
              edges.add(sorted_tuple(i0,i2))
              edges.add(sorted_tuple(i0,i3))
              edges.add(sorted_tuple(i1,i2))
              edges.add(sorted_tuple(i1,i3))
              edges.add(sorted_tuple(i2,i3))
              return edges





              share|improve this answer






























                0














                It can also be done using the three-dimensional plotting of matplotlib (without the need for the mayavi package).



                The following code is an initial simple implementation of such a function.



                import numpy as np
                import matplotlib.pyplot as plt
                from mpl_toolkits import mplot3d
                from scipy.spatial import Delaunay

                def plot_tri_simple(ax, points, tri):
                for tr in tri.simplices:
                pts = points[tr, :]
                ax.plot3D(pts[[0,1],0], pts[[0,1],1], pts[[0,1],2], color='g', lw='0.1')
                ax.plot3D(pts[[0,2],0], pts[[0,2],1], pts[[0,2],2], color='g', lw='0.1')
                ax.plot3D(pts[[0,3],0], pts[[0,3],1], pts[[0,3],2], color='g', lw='0.1')
                ax.plot3D(pts[[1,2],0], pts[[1,2],1], pts[[1,2],2], color='g', lw='0.1')
                ax.plot3D(pts[[1,3],0], pts[[1,3],1], pts[[1,3],2], color='g', lw='0.1')
                ax.plot3D(pts[[2,3],0], pts[[2,3],1], pts[[2,3],2], color='g', lw='0.1')

                ax.scatter(points[:,0], points[:,1], points[:,2], color='b')


                The result of calling this function with the test code below results in the following figure:
                enter image description here



                np.random.seed(0)
                x = 2.0 * np.random.rand(20) - 1.0
                y = 2.0 * np.random.rand(20) - 1.0
                z = 2.0 * np.random.rand(20) - 1.0
                points = np.vstack([x, y, z]).T
                tri = Delaunay(points)

                fig = plt.figure()
                ax = plt.axes(projection='3d')
                plot_tri(ax, points, tri)


                The code above is slow because the plot is done within the loop. Furthermore, it works on each simplex separately so edges are rendered more than once.
                A more efficient implementation follows, which makes use of an auxiliary function collect_edges to take each edge only once, and uses np.nan values in the plot function to draw the edge segments in a single plot command.



                The result of running the test code above with the new function gives an identical figure but the running time is improved by a factor of x80 on my machine (300 ms compared to 3.6 ms).



                def plot_tri_2(ax, points, tri):
                edges = collect_edges(tri)
                x = np.array()
                y = np.array()
                z = np.array()
                for (i,j) in edges:
                x = np.append(x, [points[i, 0], points[j, 0], np.nan])
                y = np.append(y, [points[i, 1], points[j, 1], np.nan])
                z = np.append(z, [points[i, 2], points[j, 2], np.nan])
                ax.plot3D(x, y, z, color='g', lw='0.1')

                ax.scatter(points[:,0], points[:,1], points[:,2], color='b')


                def collect_edges(tri):
                edges = set()

                def sorted_tuple(a,b):
                return (a,b) if a < b else (b,a)
                # Add edges of tetrahedron (sorted so we don't add an edge twice, even if it comes in reverse order).
                for (i0, i1, i2, i3) in tri.simplices:
                edges.add(sorted_tuple(i0,i1))
                edges.add(sorted_tuple(i0,i2))
                edges.add(sorted_tuple(i0,i3))
                edges.add(sorted_tuple(i1,i2))
                edges.add(sorted_tuple(i1,i3))
                edges.add(sorted_tuple(i2,i3))
                return edges





                share|improve this answer




























                  0












                  0








                  0







                  It can also be done using the three-dimensional plotting of matplotlib (without the need for the mayavi package).



                  The following code is an initial simple implementation of such a function.



                  import numpy as np
                  import matplotlib.pyplot as plt
                  from mpl_toolkits import mplot3d
                  from scipy.spatial import Delaunay

                  def plot_tri_simple(ax, points, tri):
                  for tr in tri.simplices:
                  pts = points[tr, :]
                  ax.plot3D(pts[[0,1],0], pts[[0,1],1], pts[[0,1],2], color='g', lw='0.1')
                  ax.plot3D(pts[[0,2],0], pts[[0,2],1], pts[[0,2],2], color='g', lw='0.1')
                  ax.plot3D(pts[[0,3],0], pts[[0,3],1], pts[[0,3],2], color='g', lw='0.1')
                  ax.plot3D(pts[[1,2],0], pts[[1,2],1], pts[[1,2],2], color='g', lw='0.1')
                  ax.plot3D(pts[[1,3],0], pts[[1,3],1], pts[[1,3],2], color='g', lw='0.1')
                  ax.plot3D(pts[[2,3],0], pts[[2,3],1], pts[[2,3],2], color='g', lw='0.1')

                  ax.scatter(points[:,0], points[:,1], points[:,2], color='b')


                  The result of calling this function with the test code below results in the following figure:
                  enter image description here



                  np.random.seed(0)
                  x = 2.0 * np.random.rand(20) - 1.0
                  y = 2.0 * np.random.rand(20) - 1.0
                  z = 2.0 * np.random.rand(20) - 1.0
                  points = np.vstack([x, y, z]).T
                  tri = Delaunay(points)

                  fig = plt.figure()
                  ax = plt.axes(projection='3d')
                  plot_tri(ax, points, tri)


                  The code above is slow because the plot is done within the loop. Furthermore, it works on each simplex separately so edges are rendered more than once.
                  A more efficient implementation follows, which makes use of an auxiliary function collect_edges to take each edge only once, and uses np.nan values in the plot function to draw the edge segments in a single plot command.



                  The result of running the test code above with the new function gives an identical figure but the running time is improved by a factor of x80 on my machine (300 ms compared to 3.6 ms).



                  def plot_tri_2(ax, points, tri):
                  edges = collect_edges(tri)
                  x = np.array()
                  y = np.array()
                  z = np.array()
                  for (i,j) in edges:
                  x = np.append(x, [points[i, 0], points[j, 0], np.nan])
                  y = np.append(y, [points[i, 1], points[j, 1], np.nan])
                  z = np.append(z, [points[i, 2], points[j, 2], np.nan])
                  ax.plot3D(x, y, z, color='g', lw='0.1')

                  ax.scatter(points[:,0], points[:,1], points[:,2], color='b')


                  def collect_edges(tri):
                  edges = set()

                  def sorted_tuple(a,b):
                  return (a,b) if a < b else (b,a)
                  # Add edges of tetrahedron (sorted so we don't add an edge twice, even if it comes in reverse order).
                  for (i0, i1, i2, i3) in tri.simplices:
                  edges.add(sorted_tuple(i0,i1))
                  edges.add(sorted_tuple(i0,i2))
                  edges.add(sorted_tuple(i0,i3))
                  edges.add(sorted_tuple(i1,i2))
                  edges.add(sorted_tuple(i1,i3))
                  edges.add(sorted_tuple(i2,i3))
                  return edges





                  share|improve this answer















                  It can also be done using the three-dimensional plotting of matplotlib (without the need for the mayavi package).



                  The following code is an initial simple implementation of such a function.



                  import numpy as np
                  import matplotlib.pyplot as plt
                  from mpl_toolkits import mplot3d
                  from scipy.spatial import Delaunay

                  def plot_tri_simple(ax, points, tri):
                  for tr in tri.simplices:
                  pts = points[tr, :]
                  ax.plot3D(pts[[0,1],0], pts[[0,1],1], pts[[0,1],2], color='g', lw='0.1')
                  ax.plot3D(pts[[0,2],0], pts[[0,2],1], pts[[0,2],2], color='g', lw='0.1')
                  ax.plot3D(pts[[0,3],0], pts[[0,3],1], pts[[0,3],2], color='g', lw='0.1')
                  ax.plot3D(pts[[1,2],0], pts[[1,2],1], pts[[1,2],2], color='g', lw='0.1')
                  ax.plot3D(pts[[1,3],0], pts[[1,3],1], pts[[1,3],2], color='g', lw='0.1')
                  ax.plot3D(pts[[2,3],0], pts[[2,3],1], pts[[2,3],2], color='g', lw='0.1')

                  ax.scatter(points[:,0], points[:,1], points[:,2], color='b')


                  The result of calling this function with the test code below results in the following figure:
                  enter image description here



                  np.random.seed(0)
                  x = 2.0 * np.random.rand(20) - 1.0
                  y = 2.0 * np.random.rand(20) - 1.0
                  z = 2.0 * np.random.rand(20) - 1.0
                  points = np.vstack([x, y, z]).T
                  tri = Delaunay(points)

                  fig = plt.figure()
                  ax = plt.axes(projection='3d')
                  plot_tri(ax, points, tri)


                  The code above is slow because the plot is done within the loop. Furthermore, it works on each simplex separately so edges are rendered more than once.
                  A more efficient implementation follows, which makes use of an auxiliary function collect_edges to take each edge only once, and uses np.nan values in the plot function to draw the edge segments in a single plot command.



                  The result of running the test code above with the new function gives an identical figure but the running time is improved by a factor of x80 on my machine (300 ms compared to 3.6 ms).



                  def plot_tri_2(ax, points, tri):
                  edges = collect_edges(tri)
                  x = np.array()
                  y = np.array()
                  z = np.array()
                  for (i,j) in edges:
                  x = np.append(x, [points[i, 0], points[j, 0], np.nan])
                  y = np.append(y, [points[i, 1], points[j, 1], np.nan])
                  z = np.append(z, [points[i, 2], points[j, 2], np.nan])
                  ax.plot3D(x, y, z, color='g', lw='0.1')

                  ax.scatter(points[:,0], points[:,1], points[:,2], color='b')


                  def collect_edges(tri):
                  edges = set()

                  def sorted_tuple(a,b):
                  return (a,b) if a < b else (b,a)
                  # Add edges of tetrahedron (sorted so we don't add an edge twice, even if it comes in reverse order).
                  for (i0, i1, i2, i3) in tri.simplices:
                  edges.add(sorted_tuple(i0,i1))
                  edges.add(sorted_tuple(i0,i2))
                  edges.add(sorted_tuple(i0,i3))
                  edges.add(sorted_tuple(i1,i2))
                  edges.add(sorted_tuple(i1,i3))
                  edges.add(sorted_tuple(i2,i3))
                  return edges






                  share|improve this answer














                  share|improve this answer



                  share|improve this answer








                  edited Nov 13 '18 at 15:50

























                  answered Nov 13 '18 at 15:45









                  Iddo HannielIddo Hanniel

                  3165




                  3165






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Stack Overflow!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f20025784%2fhow-to-visualize-3d-delaunay-triangulation-in-python%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      Bressuire

                      Vorschmack

                      Quarantine