Carmichael function
In number theory, the Carmichael function associates to every positive integer n a positive integer λ(n){displaystyle lambda (n)}, defined as the smallest positive integer m such that
am≡1(modn){displaystyle a^{m}equiv 1{pmod {n}}} for every integer a between 1 and n that is coprime to n.
(Dropping the phrase "between 1 and n" leads to an equivalent definition.)
In algebraic terms, λ(n){displaystyle lambda (n)} equals the exponent of the multiplicative group of integers modulo n.
The Carmichael function is named after the American mathematician Robert Carmichael and is also known as the reduced totient function or the least universal exponent function.
The first 36 values of λ(n){displaystyle lambda (n)} (sequence A002322 in the OEIS) compared to Euler's totient function φ{displaystyle varphi }. (in bold if they are different, the ns such that they are different are listed in OEIS: A033949)
n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
λ(n){displaystyle lambda (n)} | 1 | 1 | 2 | 2 | 4 | 2 | 6 | 2 | 6 | 4 | 10 | 2 | 12 | 6 | 4 | 4 | 16 | 6 | 18 | 4 | 6 | 10 | 22 | 2 | 20 | 12 | 18 | 6 | 28 | 4 | 30 | 8 | 10 | 16 | 12 | 6 |
φ(n){displaystyle varphi (n)} | 1 | 1 | 2 | 2 | 4 | 2 | 6 | 4 | 6 | 4 | 10 | 4 | 12 | 6 | 8 | 8 | 16 | 6 | 18 | 8 | 12 | 10 | 22 | 8 | 20 | 12 | 18 | 12 | 28 | 8 | 30 | 16 | 20 | 16 | 24 | 12 |
Contents
1 Numerical example
2 Computing λ(n){displaystyle lambda (n)} with Carmichael's theorem
3 Properties of the Carmichael function
3.1 λ(n) divides φ(n)
3.2 Minimality
3.3 Divisibility
3.4 Composition
3.5 Primitive m-th roots of unity
3.6 Exponential cycle length
3.7 Average and typical value
3.8 Lower bounds
3.9 Small values
3.10 Image of the function
4 Use in cryptography
5 See also
6 Notes
7 References
Numerical example
Carmichael's function at 8 is 2, i.e. λ(8)=2{displaystyle lambda (8)=2}, because for any number a co-prime to 8 it holds that a2 ≡ 1 (mod 8). Namely, 12 = 1 (mod 8), 32 = 9 ≡ 1 (mod 8), 52 = 25 ≡ 1 (mod 8) and 72 = 49 ≡ 1 (mod 8). Euler's totient function at 8 is 4, i.e. φ(8)=4{displaystyle varphi (8)=4}, because there are 4 numbers lesser than and coprime to 8 (1, 3, 5, and 7). Euler's theorem assures that a4 ≡ 1 (mod 8) for all a coprime to 8, but 4 is not the smallest such exponent.
Computing λ(n){displaystyle lambda (n)} with Carmichael's theorem
By the fundamental theorem of arithmetic any n > 1 can be written in a unique way as
- n=p1r1p2r2…pkrk{displaystyle n=p_{1}^{r_{1}}p_{2}^{r_{2}}dots p_{k}^{r_{k}}}
where p1 < p2 < ... < pk are primes and r1 , ..., rk are positive integers. It is then the case that λ(n) is the least common multiple of the λ of each of its prime power factors:
- λ(n)=lcm(λ(p1r1),λ(p2r2),…,λ(pkrk)).{displaystyle lambda (n)=operatorname {lcm} {big (}lambda (p_{1}^{r_{1}}),,lambda (p_{2}^{r_{2}}),,ldots ,,lambda (p_{k}^{r_{k}}){big )}.}
This can be proved using the Chinese Remainder Theorem.
Carmichael's theorem explains how to compute λ of a prime power: for a power of an odd prime and for 2 and 4, λ(n) is equal to the Euler totient φ(n); for powers of 2 greater than 4 it is equal to half of the Euler totient.
Euler's function for prime powers is given by
- φ(pr)=pr−1(p−1).{displaystyle varphi (p^{r})=p^{r-1}(p-1).;}
Properties of the Carmichael function
λ(n) divides φ(n)
This follows from elementary group theory, because the exponent of any finite abelian group must divide the order of the group. λ(n) is the exponent of the multiplicative group of integers modulo n while φ(n) is the order of that group.
We can thus view Carmichael's theorem as a sharpening of Euler's theorem.
Minimality
Suppose am≡1(modn){displaystyle a^{m}equiv 1{pmod {n}}} for all numbers a coprime with n. Then λ(n)|m{displaystyle lambda (n)|m}.
Proof. If m=kλ(n)+r{displaystyle m=k;lambda (n)+r} with 0≤r<λ(n){displaystyle 0leq r<lambda (n)}, then ar=1k⋅ar≡(aλ(n))k⋅ar=akλ(n)+r=am≡1(modn){displaystyle a^{r}=1^{k}cdot a^{r}equiv (a^{lambda (n)})^{k}cdot a^{r}=a^{k;lambda (n)+r}=a^{m}equiv 1{pmod {n}}} for all numbers a coprime with n. It follows r=0{displaystyle r=0} , since r<λ(n){displaystyle r<lambda (n)} and λ(n){displaystyle lambda (n)} the minimal positive such number.
Divisibility
- a|b⇒λ(a)|λ(b){displaystyle a|bRightarrow lambda (a)|lambda (b)}
Proof. The result follows from the formula
λ(n)=lcm(λ(p1r1),λ(p2r2),…,λ(pkrk)){displaystyle lambda (n)=operatorname {lcm} {big (}lambda (p_{1}^{r_{1}}),,lambda (p_{2}^{r_{2}}),,ldots ,,lambda (p_{k}^{r_{k}}){big )}}
mentioned above.
Composition
For all positive integers a{displaystyle a} and b{displaystyle b} it holds
λ(lcm(a,b))=lcm(λ(a),λ(b)){displaystyle lambda (mathrm {lcm} (a,b))=mathrm {lcm} (lambda (a),lambda (b))} .
This is an immediate consequence of the recursive definition of the Carmichael function.
Primitive m-th roots of unity
Let a{displaystyle a} and n{displaystyle n} be coprime and
let m{displaystyle m} be the smallest exponent with am≡1(modn){displaystyle a^{m}equiv 1{pmod {n}}},
then it holds
m|λ(n){displaystyle m|lambda (n)} .
That is, the orders of primitive roots of unity in the ring of integers modulo n{displaystyle n} are divisors of λ(n){displaystyle lambda (n)}.
Exponential cycle length
If n{displaystyle n} has maximum prime exponent rmax{displaystyle r_{rm {max}}} under prime factorization, then for all a{displaystyle a} (including those not co-prime to n{displaystyle n}) and all r≥rmax{displaystyle rgeq r_{rm {max}}},
- ar≡ar+λ(n)(modn){displaystyle a^{r}equiv a^{r+lambda (n)}{pmod {n}}}
In particular, for squarefree n{displaystyle n} (rmax=1{displaystyle r_{rm {max}}=1}), for all a{displaystyle a}
- a≡aλ(n)+1(modn){displaystyle aequiv a^{lambda (n)+1}{pmod {n}}}
Average and typical value
For any x > 16:
1x∑n≤xλ(n)=xlnxeB(1+o(1))lnlnx/(lnlnlnx){displaystyle {frac {1}{x}}sum _{nleq x}lambda (n)={frac {x}{ln x}}e^{B(1+o(1))ln ln x/(ln ln ln x)}}.[1][2]
Where B is a constant,
- B=e−γ∏p(1−1(p−1)2(p+1))≈0.34537 .{displaystyle B=e^{-gamma }prod _{p}left({1-{frac {1}{(p-1)^{2}(p+1)}}}right)approx 0.34537 .}
For all numbers N and all except o(N) positive integers n ≤ N:
- λ(n)=n/(lnn)lnlnlnn+A+o(1){displaystyle lambda (n)=n/(ln n)^{ln ln ln n+A+o(1)},}
where A is a constant,[2][3]
- A=−1+∑plogp(p−1)2≈0.2269688 .{displaystyle A=-1+sum _{p}{frac {log p}{(p-1)^{2}}}approx 0.2269688 .}
Lower bounds
For any sufficiently large number N and for any Δ≥(lnlnN)3{displaystyle Delta geq (ln ln N)^{3}}, there are at most
- Ne−0.69(ΔlnΔ)1/3{displaystyle Ne^{-0.69(Delta ln Delta )^{1/3}}}
positive integers n≤N{displaystyle nleq N} such that λ(n)≤ne−Δ{displaystyle lambda (n)leq ne^{-Delta }}.[4]
For any sequence n1<n2<n3<⋯{displaystyle n_{1}<n_{2}<n_{3}<cdots } of positive integers, any constant 0<c<1/ln2{displaystyle 0<c<1/ln 2}, and any sufficiently large i:
λ(ni)>(lnni)clnlnlnni{displaystyle lambda (n_{i})>(ln n_{i})^{cln ln ln n_{i}}}.[5][6]
Small values
For a constant c and any sufficiently large positive A, there exists an integer n>A{displaystyle n>A} such that λ(n)<(lnA)clnlnlnA{displaystyle lambda (n)<(ln A)^{cln ln ln A}}.[6]
Moreover, n is of the form
- n=∏(q−1)|m and q is primeq{displaystyle n=prod _{(q-1)|m{text{ and }}q{text{ is prime}}}q}
for some square-free integer m<(lnA)clnlnlnA{displaystyle m<(ln A)^{cln ln ln A}}.[5]
Image of the function
The set of values of the Carmichael function has counting function
- x(logx)η+o(1) ,{displaystyle {frac {x}{(log x)^{eta +o(1)}}} ,}
where η=1−1+loglog2log2=0.08607{displaystyle eta =1-{frac {1+log log 2}{log 2}}=0.08607}….[7]
Use in cryptography
The Carmichael function is important in cryptography due its use in
the RSA encryption algorithm.
See also
- Carmichael number
Notes
^ Theorem 3 in Erdős (1991)
^ ab Sándor & Crstici (2004) p.194
^ Theorem 2 in Erdős (1991)
^ Theorem 5 in Friedlander (2001)
^ ab Theorem 1 in Erdős 1991
^ ab Sándor & Crstici (2004) p.193
^ Ford, Kevin; Luca, Florian; Pomerance, Carl (27 August 2014). "The image of Carmichael's λ-function". Algebra & Number Theory. 8 (8): 2009–2026. arXiv:1408.6506. doi:10.2140/ant.2014.8.2009..mw-parser-output cite.citation{font-style:inherit}.mw-parser-output q{quotes:"""""""'""'"}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-limited a,.mw-parser-output .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}
References
Erdős, Paul; Pomerance, Carl; Schmutz, Eric (1991). "Carmichael's lambda function". Acta Arithmetica. 58 (4): 363–385. doi:10.4064/aa-58-4-363-385. ISSN 0065-1036. MR 1121092. Zbl 0734.11047.
Friedlander, John B.; Pomerance, Carl; Shparlinski, Igor E. (2001). "Period of the power generator and small values of the Carmichael function". Mathematics of Computation. 70 (236): 1591–1605, 1803–1806. doi:10.1090/s0025-5718-00-01282-5. ISSN 0025-5718. MR 1836921. Zbl 1029.11043.
Sándor, Jozsef; Crstici, Borislav (2004). Handbook of number theory II. Dordrecht: Kluwer Academic. pp. 32–36, 193–195. ISBN 978-1-4020-2546-4. Zbl 1079.11001.
Carmichael, R. D. (2004-10-10). The Theory of Numbers. Nabu Press. ISBN 978-1144400345.