Legendre polynomials







The six first Legendre polynomials.


In mathematics, Legendre polynomials (named after Adrien-Marie Legendre) are the polynomial solutions Pn(x){displaystyle P_{n}(x)}P_n(x) to Legendre's differential equation








ddx[(1−x2)dPn(x)dx]+n(n+1)Pn(x)=0.{displaystyle {frac {mathrm {d} }{mathrm {d} x}}left[left(1-x^{2}right){frac {mathrm {d} P_{n}(x)}{mathrm {d} x}}right]+n(n+1)P_{n}(x)=0,.}{displaystyle {frac {mathrm {d} }{mathrm {d} x}}left[left(1-x^{2}right){frac {mathrm {d} P_{n}(x)}{mathrm {d} x}}right]+n(n+1)P_{n}(x)=0,.}












 



 



 



 





(1)




with integer parameter n≥0{displaystyle ngeq 0}ngeq 0 and with the convention Pn(1)=1{displaystyle P_{n}(1)=1}{displaystyle P_{n}(1)=1}. The Pn(x){displaystyle P_{n}(x)}P_n(x) form a polynomial sequence of orthogonal polynomials of degree n. They can be expressed using Rodrigues' formula:


Pn(x)=12nn!dndxn(x2−1)n,{displaystyle P_{n}(x)={frac {1}{2^{n}n!}}{frac {mathrm {d} ^{n}}{mathrm {d} x^{n}}}left(x^{2}-1right)^{n},,}{displaystyle P_{n}(x)={frac {1}{2^{n}n!}}{frac {mathrm {d} ^{n}}{mathrm {d} x^{n}}}left(x^{2}-1right)^{n},,}

or any of the other representations given below.


The differential equation admits another, non-polynomial solution, the Legendre functions of the second kind Qn{displaystyle Q_{n}}Q_{n}, discussed below.
A two-parameter generalization of (Eq. 1) is called Legendre's general differential equation, solved by the Associated Legendre polynomials. Legendre functions are solutions of Legendre's differential equation (generalized or not) with non-integer parameters.


Legendre's differential equation is frequently encountered in physics and other technical fields. In particular, it occurs when solving Laplace's equation (and related partial differential equations) in spherical coordinates. The generating function is the basis for multipole expansions.




Contents






  • 1 Recursive definition


  • 2 Explicit representations


  • 3 Orthogonality


  • 4 Applications of Legendre polynomials


    • 4.1 Expanding a 1/r potential


    • 4.2 Legendre polynomials in multipole expansions


    • 4.3 Legendre polynomials in trigonometry




  • 5 Additional properties of Legendre polynomials


    • 5.1 Recursion relations


    • 5.2 Asymptotes




  • 6 Legendre polynomials with transformed argument


    • 6.1 Shifted Legendre polynomials


    • 6.2 Legendre rational functions




  • 7 Legendre functions of the second kind (Qn)


  • 8 See also


  • 9 Notes


  • 10 References


  • 11 External links





Recursive definition


The Legendre differential equation may be solved using the standard power series method. The equation has regular singular points at x = ±1 so, in general, a series solution about the origin will only converge for |x| < 1. When n is an integer, the solution Pn(x) that is regular at x = 1 is also regular at x = −1, and the series for this solution terminates (i.e. it is a polynomial).


Pn can also be defined as the coefficients in a Taylor series expansion of the generating function[1]








11−2xt+t2=∑n=0∞Pn(x)tn.{displaystyle {frac {1}{sqrt {1-2xt+t^{2}}}}=sum _{n=0}^{infty }P_{n}(x)t^{n},.}{displaystyle {frac {1}{sqrt {1-2xt+t^{2}}}}=sum _{n=0}^{infty }P_{n}(x)t^{n},.}












 



 



 



 





(2)




Expanding the Taylor series in Eq. 2 for the first two terms gives


P0(x)=1,P1(x)=x{displaystyle P_{0}(x)=1,,quad P_{1}(x)=x}{displaystyle P_{0}(x)=1,,quad P_{1}(x)=x}

for the first two Legendre polynomials. To obtain further terms without resorting to direct expansion of the Taylor series, Eq. 2 is differentiated with respect to t on both sides and rearranged to obtain


x−t1−2xt+t2=(1−2xt+t2)∑n=1∞nPn(x)tn−1.{displaystyle {frac {x-t}{sqrt {1-2xt+t^{2}}}}=left(1-2xt+t^{2}right)sum _{n=1}^{infty }nP_{n}(x)t^{n-1},.}{displaystyle {frac {x-t}{sqrt {1-2xt+t^{2}}}}=left(1-2xt+t^{2}right)sum _{n=1}^{infty }nP_{n}(x)t^{n-1},.}

Replacing the quotient of the square root with its definition in Eq. 2, and equating the coefficients of powers of t in the resulting expansion gives Bonnet’s recursion formula


(n+1)Pn+1(x)=(2n+1)xPn(x)−nPn−1(x).{displaystyle (n+1)P_{n+1}(x)=(2n+1)xP_{n}(x)-nP_{n-1}(x),.}{displaystyle (n+1)P_{n+1}(x)=(2n+1)xP_{n}(x)-nP_{n-1}(x),.}

This relation, along with the first two polynomials P0 and P1, allows the Legendre polynomials to be generated recursively.



Explicit representations


Explicit representations include


Pn(x)=12n∑k=0n(nk)2(x−1)n−k(x+1)kPn(x)=∑k=0n(nk)(n+kk)(x−12)kPn(x)=12n∑k=0[n2](−1)k(nk)(2n−2kn)xn−2kPn(x)=2n∑k=0nxk(nk)(n+k−12n),{displaystyle {begin{aligned}P_{n}(x)&={frac {1}{2^{n}}}sum _{k=0}^{n}{binom {n}{k}}^{2}(x-1)^{n-k}(x+1)^{k}\P_{n}(x)&=sum _{k=0}^{n}{binom {n}{k}}{binom {n+k}{k}}left({frac {x-1}{2}}right)^{k}\P_{n}(x)&={frac {1}{2^{n}}}sum _{k=0}^{[{frac {n}{2}}]}(-1)^{k}{binom {n}{k}}{binom {2n-2k}{n}}x^{n-2k}\P_{n}(x)&=2^{n}sum _{k=0}^{n}x^{k}{binom {n}{k}}{binom {frac {n+k-1}{2}}{n}},,end{aligned}}}{displaystyle {begin{aligned}P_{n}(x)&={frac {1}{2^{n}}}sum _{k=0}^{n}{binom {n}{k}}^{2}(x-1)^{n-k}(x+1)^{k}\P_{n}(x)&=sum _{k=0}^{n}{binom {n}{k}}{binom {n+k}{k}}left({frac {x-1}{2}}right)^{k}\P_{n}(x)&={frac {1}{2^{n}}}sum _{k=0}^{[{frac {n}{2}}]}(-1)^{k}{binom {n}{k}}{binom {2n-2k}{n}}x^{n-2k}\P_{n}(x)&=2^{n}sum _{k=0}^{n}x^{k}{binom {n}{k}}{binom {frac {n+k-1}{2}}{n}},,end{aligned}}}

where the last, which is immediate from the recursion formula, expresses the Legendre polynomials by simple monomials and involves the multiplicative formula of the binomial coefficient.


The first few Legendre polynomials are:


nPn(x)011x212(3x2−1)312(5x3−3x)418(35x4−30x2+3)518(63x5−70x3+15x)6116(231x6−315x4+105x2−5)7116(429x7−693x5+315x3−35x)81128(6435x8−12012x6+6930x4−1260x2+35)91128(12155x9−25740x7+18018x5−4620x3+315x)101256(46189x10−109395x8+90090x6−30030x4+3465x2−63){displaystyle {begin{array}{r|r}n&P_{n}(x)\hline 0&1\1&x\2&{tfrac {1}{2}}left(3x^{2}-1right)\3&{tfrac {1}{2}}left(5x^{3}-3xright)\4&{tfrac {1}{8}}left(35x^{4}-30x^{2}+3right)\5&{tfrac {1}{8}}left(63x^{5}-70x^{3}+15xright)\6&{tfrac {1}{16}}left(231x^{6}-315x^{4}+105x^{2}-5right)\7&{tfrac {1}{16}}left(429x^{7}-693x^{5}+315x^{3}-35xright)\8&{tfrac {1}{128}}left(6435x^{8}-12012x^{6}+6930x^{4}-1260x^{2}+35right)\9&{tfrac {1}{128}}left(12155x^{9}-25740x^{7}+18018x^{5}-4620x^{3}+315xright)\10&{tfrac {1}{256}}left(46189x^{10}-109395x^{8}+90090x^{6}-30030x^{4}+3465x^{2}-63right)\hline end{array}}}{displaystyle {begin{array}{r|r}n&P_{n}(x)\hline 0&1\1&x\2&{tfrac {1}{2}}left(3x^{2}-1right)\3&{tfrac {1}{2}}left(5x^{3}-3xright)\4&{tfrac {1}{8}}left(35x^{4}-30x^{2}+3right)\5&{tfrac {1}{8}}left(63x^{5}-70x^{3}+15xright)\6&{tfrac {1}{16}}left(231x^{6}-315x^{4}+105x^{2}-5right)\7&{tfrac {1}{16}}left(429x^{7}-693x^{5}+315x^{3}-35xright)\8&{tfrac {1}{128}}left(6435x^{8}-12012x^{6}+6930x^{4}-1260x^{2}+35right)\9&{tfrac {1}{128}}left(12155x^{9}-25740x^{7}+18018x^{5}-4620x^{3}+315xright)\10&{tfrac {1}{256}}left(46189x^{10}-109395x^{8}+90090x^{6}-30030x^{4}+3465x^{2}-63right)\hline end{array}}}

The graphs of these polynomials (up to n = 5) are shown below:


Plot of the six first Legendre polynomials.


Orthogonality


An important property of the Legendre polynomials is that they are orthogonal with respect to the L2 norm on the interval −1 ≤ x ≤ 1:


11Pm(x)Pn(x)dx=22n+1δmn{displaystyle int _{-1}^{1}P_{m}(x)P_{n}(x),mathrm {d} x={frac {2}{2n+1}}delta _{mn}}{displaystyle int _{-1}^{1}P_{m}(x)P_{n}(x),mathrm {d} x={frac {2}{2n+1}}delta _{mn}}

(where δmn denotes the Kronecker delta, equal to 1 if m = n and to 0 otherwise).


In fact, an alternative derivation of the Legendre polynomials is by carrying out the Gram–Schmidt process on the polynomials {1, x, x2, ...} with respect to this inner product. The reason for this orthogonality property is that the Legendre differential equation can be viewed as a Sturm–Liouville problem, where the Legendre polynomials are eigenfunctions of a Hermitian differential operator:


ddx((1−x2)ddxP(x))=−λP(x),{displaystyle {frac {mathrm {d} }{mathrm {d} x}}left(left(1-x^{2}right){frac {mathrm {d} }{mathrm {d} x}}P(x)right)=-lambda P(x),,}{displaystyle {frac {mathrm {d} }{mathrm {d} x}}left(left(1-x^{2}right){frac {mathrm {d} }{mathrm {d} x}}P(x)right)=-lambda P(x),,}

where the eigenvalue λ corresponds to n(n + 1).



Applications of Legendre polynomials



Expanding a 1/r potential


The Legendre polynomials were first introduced in 1782 by Adrien-Marie Legendre[2] as the coefficients in the expansion of the Newtonian potential


1|x−x′|=1r2+r′2−2rr′cos⁡γ=∑l=0∞r′lrl+1Pl(cos⁡γ){displaystyle {frac {1}{left|mathbf {x} -mathbf {x} 'right|}}={frac {1}{sqrt {r^{2}+{r'}^{2}-2r{r'}cos gamma }}}=sum _{l=0}^{infty }{frac {{r'}^{l}}{r^{l+1}}}P_{l}(cos gamma )}{displaystyle {frac {1}{left|mathbf {x} -mathbf {x} 'right|}}={frac {1}{sqrt {r^{2}+{r'}^{2}-2r{r'}cos gamma }}}=sum _{l=0}^{infty }{frac {{r'}^{l}}{r^{l+1}}}P_{l}(cos gamma )}

where r and r are the lengths of the vectors x and x respectively and γ is the angle between those two vectors. The series converges when r > r. The expression gives the gravitational potential associated to a point mass or the Coulomb potential associated to a point charge. The expansion using Legendre polynomials might be useful, for instance, when integrating this expression over a continuous mass or charge distribution.


Legendre polynomials occur in the solution of Laplace's equation of the static potential, 2Φ(x) = 0, in a charge-free region of space, using the method of separation of variables, where the boundary conditions have axial symmetry (no dependence on an azimuthal angle). Where is the axis of symmetry and θ is the angle between the position of the observer and the axis (the zenith angle), the solution for the potential will be


Φ(r,θ)=∑l=0∞(Alrl+Blr−(l+1))Pl(cos⁡θ).{displaystyle Phi (r,theta )=sum _{l=0}^{infty }left(A_{l}r^{l}+B_{l}r^{-(l+1)}right)P_{l}(cos theta ),.}{displaystyle Phi (r,theta )=sum _{l=0}^{infty }left(A_{l}r^{l}+B_{l}r^{-(l+1)}right)P_{l}(cos theta ),.}

Al and Bl are to be determined according to the boundary condition of each problem.[3]


They also appear when solving the Schrödinger equation in three dimensions for a central force.



Legendre polynomials in multipole expansions


Diagram for the multipole expansion of electric potential.

Legendre polynomials are also useful in expanding functions of the form (this is the same as before, written a little differently):


11+η2−x=∑k=0∞ηkPk(x){displaystyle {frac {1}{sqrt {1+eta ^{2}-2eta x}}}=sum _{k=0}^{infty }eta ^{k}P_{k}(x)}{displaystyle {frac {1}{sqrt {1+eta ^{2}-2eta x}}}=sum _{k=0}^{infty }eta ^{k}P_{k}(x)}

which arise naturally in multipole expansions. The left-hand side of the equation is the generating function for the Legendre polynomials.


As an example, the electric potential Φ(r,θ) (in spherical coordinates) due to a point charge located on the z-axis at z = a (see diagram right) varies as


Φ(r,θ)∝1R=1r2+a2−2arcos⁡θ{displaystyle Phi (r,theta )propto {frac {1}{R}}={frac {1}{sqrt {r^{2}+a^{2}-2arcos theta }}}}{displaystyle Phi (r,theta )propto {frac {1}{R}}={frac {1}{sqrt {r^{2}+a^{2}-2arcos theta }}}}

If the radius r of the observation point P is greater than a, the potential may be expanded in the Legendre polynomials


Φ(r,θ)∝1r∑k=0∞(ar)kPk(cos⁡θ){displaystyle Phi (r,theta )propto {frac {1}{r}}sum _{k=0}^{infty }left({frac {a}{r}}right)^{k}P_{k}(cos theta )}{displaystyle Phi (r,theta )propto {frac {1}{r}}sum _{k=0}^{infty }left({frac {a}{r}}right)^{k}P_{k}(cos theta )}

where we have defined η = a/r < 1 and x = cos θ. This expansion is used to develop the normal multipole expansion.


Conversely, if the radius r of the observation point P is smaller than a, the potential may still be expanded in the Legendre polynomials as above, but with a and r exchanged. This expansion is the basis of interior multipole expansion.



Legendre polynomials in trigonometry


The trigonometric functions cos , also denoted as the Chebyshev polynomials Tn(cos θ) ≡ cos , can also be multipole expanded by the Legendre polynomials Pn(cos θ). The first several orders are as follows:


T0(cos⁡θ)=1=P0(cos⁡θ)T1(cos⁡θ)=cos⁡θ=P1(cos⁡θ)T2(cos⁡θ)=cos⁡=13(4P2(cos⁡θ)−P0(cos⁡θ))T3(cos⁡θ)=cos⁡=15(8P3(cos⁡θ)−3P1(cos⁡θ))T4(cos⁡θ)=cos⁡=1105(192P4(cos⁡θ)−80P2(cos⁡θ)−7P0(cos⁡θ))T5(cos⁡θ)=cos⁡=163(128P5(cos⁡θ)−56P3(cos⁡θ)−9P1(cos⁡θ))T6(cos⁡θ)=cos⁡=11155(2560P6(cos⁡θ)−1152P4(cos⁡θ)−220P2(cos⁡θ)−33P0(cos⁡θ)){displaystyle {begin{aligned}T_{0}(cos theta )&=&1&=&P_{0}(cos theta )\T_{1}(cos theta )&=&cos theta &=&P_{1}(cos theta )\T_{2}(cos theta )&=&cos 2theta &=&{tfrac {1}{3}}{bigl (}4P_{2}(cos theta )-P_{0}(cos theta ){bigr )}\T_{3}(cos theta )&=&cos 3theta &=&{tfrac {1}{5}}{bigl (}8P_{3}(cos theta )-3P_{1}(cos theta ){bigr )}\T_{4}(cos theta )&=&cos 4theta &=&{tfrac {1}{105}}{bigl (}192P_{4}(cos theta )-80P_{2}(cos theta )-7P_{0}(cos theta ){bigr )}\T_{5}(cos theta )&=&cos 5theta &=&{tfrac {1}{63}}{bigl (}128P_{5}(cos theta )-56P_{3}(cos theta )-9P_{1}(cos theta ){bigr )}\T_{6}(cos theta )&=&cos 6theta &=&{tfrac {1}{1155}}{bigl (}2560P_{6}(cos theta )-1152P_{4}(cos theta )-220P_{2}(cos theta )-33P_{0}(cos theta ){bigr )}end{aligned}}}{displaystyle {begin{aligned}T_{0}(cos theta )&=&1&=&P_{0}(cos theta )\T_{1}(cos theta )&=&cos theta &=&P_{1}(cos theta )\T_{2}(cos theta )&=&cos 2theta &=&{tfrac {1}{3}}{bigl (}4P_{2}(cos theta )-P_{0}(cos theta ){bigr )}\T_{3}(cos theta )&=&cos 3theta &=&{tfrac {1}{5}}{bigl (}8P_{3}(cos theta )-3P_{1}(cos theta ){bigr )}\T_{4}(cos theta )&=&cos 4theta &=&{tfrac {1}{105}}{bigl (}192P_{4}(cos theta )-80P_{2}(cos theta )-7P_{0}(cos theta ){bigr )}\T_{5}(cos theta )&=&cos 5theta &=&{tfrac {1}{63}}{bigl (}128P_{5}(cos theta )-56P_{3}(cos theta )-9P_{1}(cos theta ){bigr )}\T_{6}(cos theta )&=&cos 6theta &=&{tfrac {1}{1155}}{bigl (}2560P_{6}(cos theta )-1152P_{4}(cos theta )-220P_{2}(cos theta )-33P_{0}(cos theta ){bigr )}end{aligned}}}

Another property is the expression for sin (n + 1)θ, which is


sin⁡(n+1)θsin⁡θ=∑l=0nPl(cos⁡θ)Pn−l(cos⁡θ){displaystyle {frac {sin(n+1)theta }{sin theta }}=sum _{l=0}^{n}P_{l}(cos theta )P_{n-l}(cos theta )}{displaystyle {frac {sin(n+1)theta }{sin theta }}=sum _{l=0}^{n}P_{l}(cos theta )P_{n-l}(cos theta )}


Additional properties of Legendre polynomials


Legendre polynomials are symmetric or antisymmetric, that is[4]


Pn(−x)=(−1)nPn(x).{displaystyle P_{n}(-x)=left(-1right)^{n}P_{n}(x),.}{displaystyle P_{n}(-x)=left(-1right)^{n}P_{n}(x),.}

Another useful property is



11Pn(x)dx=0{displaystyle int _{-1}^{1}P_{n}(x),mathrm {d} x=0}{displaystyle int _{-1}^{1}P_{n}(x),mathrm {d} x=0} for n≥1{displaystyle ngeq 1}ngeq 1,

which follows from considering the orthogonality relation with P0(x)=1{displaystyle P_{0}(x)=1}{displaystyle P_{0}(x)=1}. It is convenient when a Legendre series iaiPi{displaystyle sum _{i}a_{i}P_{i}}{displaystyle sum _{i}a_{i}P_{i}} is used to approximate a function or experimental data: the average of the series over the interval -1...1 is simply given by the leading expansion coefficient a0{displaystyle a_{0}}a_{0}.


Since the differential equation and the orthogonality property are independent of scaling, the Legendre polynomials' definitions are "standardized" (sometimes called "normalization", but note that the actual norm is not 1) by being scaled so that


Pn(1)=1.{displaystyle P_{n}(1)=1,.}{displaystyle P_{n}(1)=1,.}

The derivative at the end point is given by


Pn′(1)=n(n+1)2.{displaystyle P_{n}'(1)={frac {n(n+1)}{2}},.}{displaystyle P_{n}'(1)={frac {n(n+1)}{2}},.}

The Askey–Gasper inequality for Legendre polynomials reads


j=0nPj(x)≥0for x≥1.{displaystyle sum _{j=0}^{n}P_{j}(x)geq 0,quad {text{for }}xgeq -1,.}{displaystyle sum _{j=0}^{n}P_{j}(x)geq 0,quad {text{for }}xgeq -1,.}

A sum of Legendre polynomials is related to the Dirac delta function for −1 ≤ y ≤ 1 and −1 ≤ x ≤ 1


δ(y−x)=12∑l=0∞(2l+1)Pl(y)Pl(x).{displaystyle delta (y-x)={frac {1}{2}}sum _{l=0}^{infty }(2l+1)P_{l}(y)P_{l}(x),.}{displaystyle delta (y-x)={frac {1}{2}}sum _{l=0}^{infty }(2l+1)P_{l}(y)P_{l}(x),.}

The Legendre polynomials of a scalar product of unit vectors can be expanded with spherical harmonics using


Pl(r⋅r′)=4π2l+1∑m=−llYlm(θ)Ylm∗′,ϕ′),{displaystyle P_{l}left(rcdot r'right)={frac {4pi }{2l+1}}sum _{m=-l}^{l}Y_{lm}(theta ,phi )Y_{lm}^{*}(theta ',phi '),,}{displaystyle P_{l}left(rcdot r'right)={frac {4pi }{2l+1}}sum _{m=-l}^{l}Y_{lm}(theta ,phi )Y_{lm}^{*}(theta ',phi '),,}

where the unit vectors r and r have spherical coordinates (θ,φ) and (θ′,φ′), respectively.



Recursion relations


As discussed above, the Legendre polynomials obey the three-term recurrence relation known as Bonnet’s recursion formula


(n+1)Pn+1(x)=(2n+1)xPn(x)−nPn−1(x){displaystyle (n+1)P_{n+1}(x)=(2n+1)xP_{n}(x)-nP_{n-1}(x)}{displaystyle (n+1)P_{n+1}(x)=(2n+1)xP_{n}(x)-nP_{n-1}(x)}

and


x2−1nddxPn(x)=xPn(x)−Pn−1(x).{displaystyle {frac {x^{2}-1}{n}}{frac {mathrm {d} }{mathrm {d} x}}P_{n}(x)=xP_{n}(x)-P_{n-1}(x),.}{displaystyle {frac {x^{2}-1}{n}}{frac {mathrm {d} }{mathrm {d} x}}P_{n}(x)=xP_{n}(x)-P_{n-1}(x),.}

Useful for the integration of Legendre polynomials is


(2n+1)Pn(x)=ddx(Pn+1(x)−Pn−1(x)).{displaystyle (2n+1)P_{n}(x)={frac {mathrm {d} }{mathrm {d} x}}{bigl (}P_{n+1}(x)-P_{n-1}(x){bigr )},.}{displaystyle (2n+1)P_{n}(x)={frac {mathrm {d} }{mathrm {d} x}}{bigl (}P_{n+1}(x)-P_{n-1}(x){bigr )},.}

From the above one can see also that


ddxPn+1(x)=(2n+1)Pn(x)+(2(n−2)+1)Pn−2(x)+(2(n−4)+1)Pn−4(x)+⋯{displaystyle {frac {mathrm {d} }{mathrm {d} x}}P_{n+1}(x)=(2n+1)P_{n}(x)+{bigl (}2(n-2)+1{bigr )}P_{n-2}(x)+{bigl (}2(n-4)+1{bigr )}P_{n-4}(x)+cdots }{displaystyle {frac {mathrm {d} }{mathrm {d} x}}P_{n+1}(x)=(2n+1)P_{n}(x)+{bigl (}2(n-2)+1{bigr )}P_{n-2}(x)+{bigl (}2(n-4)+1{bigr )}P_{n-4}(x)+cdots }

or equivalently


ddxPn+1(x)=2Pn(x)‖Pn‖2+2Pn−2(x)‖Pn−2‖2+⋯{displaystyle {frac {mathrm {d} }{mathrm {d} x}}P_{n+1}(x)={frac {2P_{n}(x)}{left|P_{n}right|^{2}}}+{frac {2P_{n-2}(x)}{left|P_{n-2}right|^{2}}}+cdots }{displaystyle {frac {mathrm {d} }{mathrm {d} x}}P_{n+1}(x)={frac {2P_{n}(x)}{left|P_{n}right|^{2}}}+{frac {2P_{n-2}(x)}{left|P_{n-2}right|^{2}}}+cdots }

where ||Pn|| is the norm over the interval −1 ≤ x ≤ 1


Pn‖=∫11(Pn(x))2dx=22n+1.{displaystyle |P_{n}|={sqrt {int _{-1}^{1}{bigl (}P_{n}(x){bigr )}^{2},mathrm {d} x}}={sqrt {frac {2}{2n+1}}},.}{displaystyle |P_{n}|={sqrt {int _{-1}^{1}{bigl (}P_{n}(x){bigr )}^{2},mathrm {d} x}}={sqrt {frac {2}{2n+1}}},.}


Asymptotes


Asymptotically for l → ∞ for arguments in (-1, 1)


Pl(cos⁡θ)=J0(lθ)+O(l−1)=22πlsin⁡θcos⁡((l+12)θπ4)+O(l−1){displaystyle {begin{aligned}P_{l}(cos theta )&=J_{0}(ltheta )+{mathcal {O}}left(l^{-1}right)\&={frac {2}{sqrt {2pi lsin theta }}}cos left(left(l+{tfrac {1}{2}}right)theta -{frac {pi }{4}}right)+{mathcal {O}}left(l^{-1}right)end{aligned}}}{displaystyle {begin{aligned}P_{l}(cos theta )&=J_{0}(ltheta )+{mathcal {O}}left(l^{-1}right)\&={frac {2}{sqrt {2pi lsin theta }}}cos left(left(l+{tfrac {1}{2}}right)theta -{frac {pi }{4}}right)+{mathcal {O}}left(l^{-1}right)end{aligned}}}

and for arguments of magnitude greater than 1


Pl(11−e2)=I0(le)+O(l−1)=12πle(1+e)l+12(1−e)l2+O(l−1),{displaystyle {begin{aligned}P_{l}left({frac {1}{sqrt {1-e^{2}}}}right)&=I_{0}(le)+{mathcal {O}}left(l^{-1}right)\&={frac {1}{sqrt {2pi le}}}{frac {(1+e)^{frac {l+1}{2}}}{(1-e)^{frac {l}{2}}}}+{mathcal {O}}left(l^{-1}right),,end{aligned}}}{displaystyle {begin{aligned}P_{l}left({frac {1}{sqrt {1-e^{2}}}}right)&=I_{0}(le)+{mathcal {O}}left(l^{-1}right)\&={frac {1}{sqrt {2pi le}}}{frac {(1+e)^{frac {l+1}{2}}}{(1-e)^{frac {l}{2}}}}+{mathcal {O}}left(l^{-1}right),,end{aligned}}}

where J0 and I0 are Bessel functions.



Legendre polynomials with transformed argument



Shifted Legendre polynomials


The shifted Legendre polynomials are defined as



P~n(x)=Pn(2x−1){displaystyle {tilde {P}}_{n}(x)=P_{n}(2x-1),}{displaystyle {tilde {P}}_{n}(x)=P_{n}(2x-1),}.

Here the "shifting" function x ↦ 2x − 1 is an affine transformation that bijectively maps the interval [0,1] to the interval [−1,1], implying that the polynomials n(x) are orthogonal on [0,1]:


01P~m(x)P~n(x)dx=12n+1δmn.{displaystyle int _{0}^{1}{tilde {P}}_{m}(x){tilde {P}}_{n}(x),mathrm {d} x={frac {1}{2n+1}}delta _{mn},.}{displaystyle int _{0}^{1}{tilde {P}}_{m}(x){tilde {P}}_{n}(x),mathrm {d} x={frac {1}{2n+1}}delta _{mn},.}

An explicit expression for the shifted Legendre polynomials is given by


P~n(x)=(−1)n∑k=0n(nk)(n+kk)(−x)k.{displaystyle {tilde {P}}_{n}(x)=(-1)^{n}sum _{k=0}^{n}{binom {n}{k}}{binom {n+k}{k}}(-x)^{k},.}{displaystyle {tilde {P}}_{n}(x)=(-1)^{n}sum _{k=0}^{n}{binom {n}{k}}{binom {n+k}{k}}(-x)^{k},.}

The analogue of Rodrigues' formula for the shifted Legendre polynomials is


P~n(x)=1n!dndxn(x2−x)n.{displaystyle {tilde {P}}_{n}(x)={frac {1}{n!}}{frac {mathrm {d} ^{n}}{mathrm {d} x^{n}}}left(x^{2}-xright)^{n},.}{displaystyle {tilde {P}}_{n}(x)={frac {1}{n!}}{frac {mathrm {d} ^{n}}{mathrm {d} x^{n}}}left(x^{2}-xright)^{n},.}

The first few shifted Legendre polynomials are:


nP~n(x)0112x−126x2−6x+1320x3−30x2+12x−1470x4−140x3+90x2−20x+15252x5−630x4+560x3−210x2+30x−1{displaystyle {begin{array}{r|r}n&{tilde {P}}_{n}(x)\hline 0&1\1&2x-1\2&6x^{2}-6x+1\3&20x^{3}-30x^{2}+12x-1\4&70x^{4}-140x^{3}+90x^{2}-20x+1\5&252x^{5}-630x^{4}+560x^{3}-210x^{2}+30x-1end{array}}}{displaystyle {begin{array}{r|r}n&{tilde {P}}_{n}(x)\hline 0&1\1&2x-1\2&6x^{2}-6x+1\3&20x^{3}-30x^{2}+12x-1\4&70x^{4}-140x^{3}+90x^{2}-20x+1\5&252x^{5}-630x^{4}+560x^{3}-210x^{2}+30x-1end{array}}}


Legendre rational functions



The Legendre rational functions are a sequence of orthogonal functions on [0, ∞). They are obtained by composing the Cayley transform with Legendre polynomials.


A rational Legendre function of degree n is defined as:


Rn(x)=2x+1Pn(x−1x+1).{displaystyle R_{n}(x)={frac {sqrt {2}}{x+1}},P_{n}left({frac {x-1}{x+1}}right),.}{displaystyle R_{n}(x)={frac {sqrt {2}}{x+1}},P_{n}left({frac {x-1}{x+1}}right),.}

They are eigenfunctions of the singular Sturm-Liouville problem:


(x+1)∂x(x∂x((x+1)v(x)))+λv(x)=0{displaystyle (x+1)partial _{x}(xpartial _{x}((x+1)v(x)))+lambda v(x)=0}(x+1)partial_x(xpartial_x((x+1)v(x)))+lambda v(x)=0

with eigenvalues


λn=n(n+1).{displaystyle lambda _{n}=n(n+1),.}{displaystyle lambda _{n}=n(n+1),.}


Legendre functions of the second kind (Qn)


As well as polynomial solutions, the Legendre equation has non-polynomial solutions represented by infinite series. These are the Legendre functions of the second kind, denoted by Qn(x).


Qn(x)=n!1⋅3⋯(2n+1)(x−(n+1)+(n+1)(n+2)2(2n+3)x−(n+3)+(n+1)(n+2)(n+3)(n+4)2⋅4(2n+3)(2n+5)x−(n+5)+⋯){displaystyle Q_{n}(x)={frac {n!}{1cdot 3cdots (2n+1)}}left(x^{-(n+1)}+{frac {(n+1)(n+2)}{2(2n+3)}}x^{-(n+3)}+{frac {(n+1)(n+2)(n+3)(n+4)}{2cdot 4(2n+3)(2n+5)}}x^{-(n+5)}+cdots right)}{displaystyle Q_{n}(x)={frac {n!}{1cdot 3cdots (2n+1)}}left(x^{-(n+1)}+{frac {(n+1)(n+2)}{2(2n+3)}}x^{-(n+3)}+{frac {(n+1)(n+2)(n+3)(n+4)}{2cdot 4(2n+3)(2n+5)}}x^{-(n+5)}+cdots right)}

Plot of the first five Legendre functions of the second kind.

The differential equation


ddx((1−x2)ddxf(x))+n(n+1)f(x)=0{displaystyle {frac {mathrm {d} }{mathrm {d} x}}left(left(1-x^{2}right){frac {mathrm {d} }{mathrm {d} x}}f(x)right)+n(n+1)f(x)=0}{displaystyle {frac {mathrm {d} }{mathrm {d} x}}left(left(1-x^{2}right){frac {mathrm {d} }{mathrm {d} x}}f(x)right)+n(n+1)f(x)=0}

has the general solution



f(x)=APn(x)+BQn(x){displaystyle f(x)=AP_{n}(x)+BQ_{n}(x)}f(x)=AP_{n}(x)+BQ_{n}(x),

where A and B are constants.



See also




  • Gaussian quadrature

  • Gegenbauer polynomials

  • Turán's inequalities

  • Legendre wavelet

  • Jacobi polynomials

  • Romanovski polynomials




Notes





  1. ^ Arfken & Weber 2005, p.743


  2. ^ Legendre, A.-M. (1785) [1782]. "Recherches sur l'attraction des sphéroïdes homogènes". Mémoires de Mathématiques et de Physique, présentés à l'Académie Royale des Sciences, par divers savans, et lus dans ses Assemblées (PDF) (in French). X. Paris. p. 411–435. Archived from the original (PDF) on 2009-09-20..mw-parser-output cite.citation{font-style:inherit}.mw-parser-output q{quotes:"""""""'""'"}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-limited a,.mw-parser-output .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}


  3. ^ Jackson, J. D. (1999). Classical Electrodynamics (3rd ed.). Wiley & Sons. p. 103. ISBN 978-0-471-30932-1.


  4. ^ Arfken & Weber 2005, p.753




References


.mw-parser-output .refbegin{font-size:90%;margin-bottom:0.5em}.mw-parser-output .refbegin-hanging-indents>ul{list-style-type:none;margin-left:0}.mw-parser-output .refbegin-hanging-indents>ul>li,.mw-parser-output .refbegin-hanging-indents>dl>dd{margin-left:0;padding-left:3.2em;text-indent:-3.2em;list-style:none}.mw-parser-output .refbegin-100{font-size:100%}



  • Abramowitz, Milton; Stegun, Irene Ann, eds. (1983) [June 1964]. "Chapter 8". Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Applied Mathematics Series. 55 (Ninth reprint with additional corrections of tenth original printing with corrections (December 1972); first ed.). Washington D.C.; New York: United States Department of Commerce, National Bureau of Standards; Dover Publications. pp. 332, 773. ISBN 978-0-486-61272-0. LCCN 64-60036. MR 0167642. LCCN 65-12253. See also chapter 22.


  • Arfken, George B.; Weber, Hans J. (2005). Mathematical Methods for Physicists. Elsevier Academic Press. ISBN 0-12-059876-0.


  • Bayin, S. S. (2006). Mathematical Methods in Science and Engineering. Wiley. ch. 2. ISBN 978-0-470-04142-0.


  • Belousov, S. L. (1962). Tables of Normalized Associated Legendre Polynomials. Mathematical Tables. 18. Pergamon Press. ISBN 978-0-08-009723-7.


  • Courant, Richard; Hilbert, David (1953). Methods of Mathematical Physics. 1. New York, NY: Interscience. ISBN 978-0-471-50447-4.


  • Dunster, T. M. (2010), "Legendre and Related Functions", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W., NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0521192255, MR 2723248


  • El Attar, Refaat (2009). Legendre Polynomials and Functions. CreateSpace. ISBN 978-1-4414-9012-4.


  • Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F. (2010), "Orthogonal Polynomials", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W., NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0521192255, MR 2723248




External links







  • A quick informal derivation of the Legendre polynomial in the context of the quantum mechanics of hydrogen


  • Hazewinkel, Michiel, ed. (2001) [1994], "Legendre polynomials", Encyclopedia of Mathematics, Springer Science+Business Media B.V. / Kluwer Academic Publishers, ISBN 978-1-55608-010-4

  • Wolfram MathWorld entry on Legendre polynomials

  • Dr James B. Calvert's article on Legendre polynomials from his personal collection of mathematics

  • The Legendre Polynomials by Carlyle E. Moore

  • Legendre Polynomials from Hyperphysics









Popular posts from this blog

Xamarin.iOS Cant Deploy on Iphone

Glorious Revolution

Dulmage-Mendelsohn matrix decomposition in Python