pandas from datetime64[ns] to object (python)





.everyoneloves__top-leaderboard:empty,.everyoneloves__mid-leaderboard:empty,.everyoneloves__bot-mid-leaderboard:empty{ height:90px;width:728px;box-sizing:border-box;
}







0















I have the code show below, where, after to convert the column closingdate from object to datetime an operate with it,and after to created a new column named 'start' with the results, I need to converted this column start from datetime to object , before to convert it to json.



If anyone can help I will highly appreciate it.Thanks in advance.



initial_data = sql(query1)
initial_data['closingdate'] = pd.to_datetime(initial_data.closingdate)

initial_data['start']=pd.to_datetime(initial_data.closingdate)+pd.to_timedelta(pd.np.ceil(initial_data.tenor1),unit='D')

initial_data=initial_data[['dealid','title','tranch_structure','start']]
initial_data['start']=pd.to_str(initial_data.start)


initial_data =initial_data.to_json(orient='table')









share|improve this question




















  • 1





    Please try to format your question respecting the 4 spaces ident for your code part, this will make your question much more readable.

    – Matina G
    Nov 16 '18 at 12:37


















0















I have the code show below, where, after to convert the column closingdate from object to datetime an operate with it,and after to created a new column named 'start' with the results, I need to converted this column start from datetime to object , before to convert it to json.



If anyone can help I will highly appreciate it.Thanks in advance.



initial_data = sql(query1)
initial_data['closingdate'] = pd.to_datetime(initial_data.closingdate)

initial_data['start']=pd.to_datetime(initial_data.closingdate)+pd.to_timedelta(pd.np.ceil(initial_data.tenor1),unit='D')

initial_data=initial_data[['dealid','title','tranch_structure','start']]
initial_data['start']=pd.to_str(initial_data.start)


initial_data =initial_data.to_json(orient='table')









share|improve this question




















  • 1





    Please try to format your question respecting the 4 spaces ident for your code part, this will make your question much more readable.

    – Matina G
    Nov 16 '18 at 12:37














0












0








0








I have the code show below, where, after to convert the column closingdate from object to datetime an operate with it,and after to created a new column named 'start' with the results, I need to converted this column start from datetime to object , before to convert it to json.



If anyone can help I will highly appreciate it.Thanks in advance.



initial_data = sql(query1)
initial_data['closingdate'] = pd.to_datetime(initial_data.closingdate)

initial_data['start']=pd.to_datetime(initial_data.closingdate)+pd.to_timedelta(pd.np.ceil(initial_data.tenor1),unit='D')

initial_data=initial_data[['dealid','title','tranch_structure','start']]
initial_data['start']=pd.to_str(initial_data.start)


initial_data =initial_data.to_json(orient='table')









share|improve this question
















I have the code show below, where, after to convert the column closingdate from object to datetime an operate with it,and after to created a new column named 'start' with the results, I need to converted this column start from datetime to object , before to convert it to json.



If anyone can help I will highly appreciate it.Thanks in advance.



initial_data = sql(query1)
initial_data['closingdate'] = pd.to_datetime(initial_data.closingdate)

initial_data['start']=pd.to_datetime(initial_data.closingdate)+pd.to_timedelta(pd.np.ceil(initial_data.tenor1),unit='D')

initial_data=initial_data[['dealid','title','tranch_structure','start']]
initial_data['start']=pd.to_str(initial_data.start)


initial_data =initial_data.to_json(orient='table')






python pandas






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited Nov 16 '18 at 12:44









Kendas

670516




670516










asked Nov 16 '18 at 12:29









serlomuserlomu

1




1








  • 1





    Please try to format your question respecting the 4 spaces ident for your code part, this will make your question much more readable.

    – Matina G
    Nov 16 '18 at 12:37














  • 1





    Please try to format your question respecting the 4 spaces ident for your code part, this will make your question much more readable.

    – Matina G
    Nov 16 '18 at 12:37








1




1





Please try to format your question respecting the 4 spaces ident for your code part, this will make your question much more readable.

– Matina G
Nov 16 '18 at 12:37





Please try to format your question respecting the 4 spaces ident for your code part, this will make your question much more readable.

– Matina G
Nov 16 '18 at 12:37












1 Answer
1






active

oldest

votes


















0














If you want a specific format , let's say 'YYYY-mm-dd HH:MM:SS', you could consider the following:



from datetime import datetime
def convert_datetime(dt):
return datetime.strftime(dt, '%Y-%m-%d %H:%M-%S')

df['timestamps']= df ['timestamps'].apply(convert_datetime)





share|improve this answer
























    Your Answer






    StackExchange.ifUsing("editor", function () {
    StackExchange.using("externalEditor", function () {
    StackExchange.using("snippets", function () {
    StackExchange.snippets.init();
    });
    });
    }, "code-snippets");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "1"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53337951%2fpandas-from-datetime64ns-to-object-python%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0














    If you want a specific format , let's say 'YYYY-mm-dd HH:MM:SS', you could consider the following:



    from datetime import datetime
    def convert_datetime(dt):
    return datetime.strftime(dt, '%Y-%m-%d %H:%M-%S')

    df['timestamps']= df ['timestamps'].apply(convert_datetime)





    share|improve this answer




























      0














      If you want a specific format , let's say 'YYYY-mm-dd HH:MM:SS', you could consider the following:



      from datetime import datetime
      def convert_datetime(dt):
      return datetime.strftime(dt, '%Y-%m-%d %H:%M-%S')

      df['timestamps']= df ['timestamps'].apply(convert_datetime)





      share|improve this answer


























        0












        0








        0







        If you want a specific format , let's say 'YYYY-mm-dd HH:MM:SS', you could consider the following:



        from datetime import datetime
        def convert_datetime(dt):
        return datetime.strftime(dt, '%Y-%m-%d %H:%M-%S')

        df['timestamps']= df ['timestamps'].apply(convert_datetime)





        share|improve this answer













        If you want a specific format , let's say 'YYYY-mm-dd HH:MM:SS', you could consider the following:



        from datetime import datetime
        def convert_datetime(dt):
        return datetime.strftime(dt, '%Y-%m-%d %H:%M-%S')

        df['timestamps']= df ['timestamps'].apply(convert_datetime)






        share|improve this answer












        share|improve this answer



        share|improve this answer










        answered Nov 16 '18 at 12:35









        Matina GMatina G

        629213




        629213
































            draft saved

            draft discarded




















































            Thanks for contributing an answer to Stack Overflow!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53337951%2fpandas-from-datetime64ns-to-object-python%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Bressuire

            Vorschmack

            Quarantine