Getting estimate and p-value into dataframe












0















I am fairly new to R. My data looks something like this (only with 9000 columns and 66 rows)



Time <- c(0, 6.4, 8.6, 15.2, 19.4, 28.1, 42.6, 73, 73, 85, 88, 88, 88, 88, 88)
ID1 <- c(55030, 54539, 54937, 48897, 58160, 54686, 55393, 47191, 39805, 37601, 51328, 28882, 45587, 60061, 31892, 28670)
ID2 <- c(20485, 11907, 10571, 20974, 10462, 11149, 20970, NA, NA, 9295, NA, 8714, 24446, 10748, 9037, 11859)
ID3 <- c(93914, 44482, 43705, 51144, 49485, 43908, 44324, 37342, 18872, 39660,61673, 43837, 36528, 44738, 41648, 11100)
DF <- data.frame (Time, ID1, ID2, ID3)


I want to get a data frame that looks like this :



ID1, rho, p-value



ID2, rho, p-value



...



The rho and the p-value would be the results from a cor.test (spearman) with Time and each ID



Among other things I've tried this:



results <- data.frame(ID="", Estimate="", P.value="")
estimates = numeric(16)
pvalues = numeric(16)
for (i in 2:4){
test <- cor.test(DF[,1], DF[,i])
estimates[i] = test$estimate
pvalues[i] = test$p.value
}


And R gives me the following error:



Error: object 'test' not found


I've also tried:



result <- do.call(rbind,lapply(2:4, function(x) {
cor.result<-cor.test(DF[,1],DF[,x])
pvalue <- cor.result$p.value
estimate <- cor.result$estimate
return(data.frame(pvalue = pvalue, estimate = estimate))
})
)


And R gives me a similar error



Error: object 'cor.result' not found


I'm sure it's an easy fix but I can't seem to figure it out. Any help is more than welcome.



This is what I got after running



dput(head(SmallDataset[,1:5]))

structure(list(Species = c("Human.hsapiens", "Chimpanzee.ptroglodytes",
"Gorilla.ggorilla", "Orangutan.pabelii", "Gibbon.nleucogenys",
"Macaque.mmulatta"), Time = c(0, 6.4, 8.61, 15.2, 19.43, 28.1
), ID1 = c(55030, 54539, 54937, 48897, 58160, 54686), ID2 = c(20485,
11907, 10571, 20974, 10462, 11149), ID3 = c(93914, 44482, 43705,
51144, 49485, 43908)), row.names = c(NA, -6L), class = c("tbl_df",
"tbl", "data.frame"))









share|improve this question

























  • You are trying to calculate correlations between your ID variables in columns 2 to 4 of DF and Time? Is that correct?

    – Cleland
    Nov 14 '18 at 16:10











  • I am trying to correlate the first column with the rest, as in 1st and 2nd, 1st and 3rd, 1st and 4th

    – Yaiza95
    Nov 14 '18 at 16:14
















0















I am fairly new to R. My data looks something like this (only with 9000 columns and 66 rows)



Time <- c(0, 6.4, 8.6, 15.2, 19.4, 28.1, 42.6, 73, 73, 85, 88, 88, 88, 88, 88)
ID1 <- c(55030, 54539, 54937, 48897, 58160, 54686, 55393, 47191, 39805, 37601, 51328, 28882, 45587, 60061, 31892, 28670)
ID2 <- c(20485, 11907, 10571, 20974, 10462, 11149, 20970, NA, NA, 9295, NA, 8714, 24446, 10748, 9037, 11859)
ID3 <- c(93914, 44482, 43705, 51144, 49485, 43908, 44324, 37342, 18872, 39660,61673, 43837, 36528, 44738, 41648, 11100)
DF <- data.frame (Time, ID1, ID2, ID3)


I want to get a data frame that looks like this :



ID1, rho, p-value



ID2, rho, p-value



...



The rho and the p-value would be the results from a cor.test (spearman) with Time and each ID



Among other things I've tried this:



results <- data.frame(ID="", Estimate="", P.value="")
estimates = numeric(16)
pvalues = numeric(16)
for (i in 2:4){
test <- cor.test(DF[,1], DF[,i])
estimates[i] = test$estimate
pvalues[i] = test$p.value
}


And R gives me the following error:



Error: object 'test' not found


I've also tried:



result <- do.call(rbind,lapply(2:4, function(x) {
cor.result<-cor.test(DF[,1],DF[,x])
pvalue <- cor.result$p.value
estimate <- cor.result$estimate
return(data.frame(pvalue = pvalue, estimate = estimate))
})
)


And R gives me a similar error



Error: object 'cor.result' not found


I'm sure it's an easy fix but I can't seem to figure it out. Any help is more than welcome.



This is what I got after running



dput(head(SmallDataset[,1:5]))

structure(list(Species = c("Human.hsapiens", "Chimpanzee.ptroglodytes",
"Gorilla.ggorilla", "Orangutan.pabelii", "Gibbon.nleucogenys",
"Macaque.mmulatta"), Time = c(0, 6.4, 8.61, 15.2, 19.43, 28.1
), ID1 = c(55030, 54539, 54937, 48897, 58160, 54686), ID2 = c(20485,
11907, 10571, 20974, 10462, 11149), ID3 = c(93914, 44482, 43705,
51144, 49485, 43908)), row.names = c(NA, -6L), class = c("tbl_df",
"tbl", "data.frame"))









share|improve this question

























  • You are trying to calculate correlations between your ID variables in columns 2 to 4 of DF and Time? Is that correct?

    – Cleland
    Nov 14 '18 at 16:10











  • I am trying to correlate the first column with the rest, as in 1st and 2nd, 1st and 3rd, 1st and 4th

    – Yaiza95
    Nov 14 '18 at 16:14














0












0








0








I am fairly new to R. My data looks something like this (only with 9000 columns and 66 rows)



Time <- c(0, 6.4, 8.6, 15.2, 19.4, 28.1, 42.6, 73, 73, 85, 88, 88, 88, 88, 88)
ID1 <- c(55030, 54539, 54937, 48897, 58160, 54686, 55393, 47191, 39805, 37601, 51328, 28882, 45587, 60061, 31892, 28670)
ID2 <- c(20485, 11907, 10571, 20974, 10462, 11149, 20970, NA, NA, 9295, NA, 8714, 24446, 10748, 9037, 11859)
ID3 <- c(93914, 44482, 43705, 51144, 49485, 43908, 44324, 37342, 18872, 39660,61673, 43837, 36528, 44738, 41648, 11100)
DF <- data.frame (Time, ID1, ID2, ID3)


I want to get a data frame that looks like this :



ID1, rho, p-value



ID2, rho, p-value



...



The rho and the p-value would be the results from a cor.test (spearman) with Time and each ID



Among other things I've tried this:



results <- data.frame(ID="", Estimate="", P.value="")
estimates = numeric(16)
pvalues = numeric(16)
for (i in 2:4){
test <- cor.test(DF[,1], DF[,i])
estimates[i] = test$estimate
pvalues[i] = test$p.value
}


And R gives me the following error:



Error: object 'test' not found


I've also tried:



result <- do.call(rbind,lapply(2:4, function(x) {
cor.result<-cor.test(DF[,1],DF[,x])
pvalue <- cor.result$p.value
estimate <- cor.result$estimate
return(data.frame(pvalue = pvalue, estimate = estimate))
})
)


And R gives me a similar error



Error: object 'cor.result' not found


I'm sure it's an easy fix but I can't seem to figure it out. Any help is more than welcome.



This is what I got after running



dput(head(SmallDataset[,1:5]))

structure(list(Species = c("Human.hsapiens", "Chimpanzee.ptroglodytes",
"Gorilla.ggorilla", "Orangutan.pabelii", "Gibbon.nleucogenys",
"Macaque.mmulatta"), Time = c(0, 6.4, 8.61, 15.2, 19.43, 28.1
), ID1 = c(55030, 54539, 54937, 48897, 58160, 54686), ID2 = c(20485,
11907, 10571, 20974, 10462, 11149), ID3 = c(93914, 44482, 43705,
51144, 49485, 43908)), row.names = c(NA, -6L), class = c("tbl_df",
"tbl", "data.frame"))









share|improve this question
















I am fairly new to R. My data looks something like this (only with 9000 columns and 66 rows)



Time <- c(0, 6.4, 8.6, 15.2, 19.4, 28.1, 42.6, 73, 73, 85, 88, 88, 88, 88, 88)
ID1 <- c(55030, 54539, 54937, 48897, 58160, 54686, 55393, 47191, 39805, 37601, 51328, 28882, 45587, 60061, 31892, 28670)
ID2 <- c(20485, 11907, 10571, 20974, 10462, 11149, 20970, NA, NA, 9295, NA, 8714, 24446, 10748, 9037, 11859)
ID3 <- c(93914, 44482, 43705, 51144, 49485, 43908, 44324, 37342, 18872, 39660,61673, 43837, 36528, 44738, 41648, 11100)
DF <- data.frame (Time, ID1, ID2, ID3)


I want to get a data frame that looks like this :



ID1, rho, p-value



ID2, rho, p-value



...



The rho and the p-value would be the results from a cor.test (spearman) with Time and each ID



Among other things I've tried this:



results <- data.frame(ID="", Estimate="", P.value="")
estimates = numeric(16)
pvalues = numeric(16)
for (i in 2:4){
test <- cor.test(DF[,1], DF[,i])
estimates[i] = test$estimate
pvalues[i] = test$p.value
}


And R gives me the following error:



Error: object 'test' not found


I've also tried:



result <- do.call(rbind,lapply(2:4, function(x) {
cor.result<-cor.test(DF[,1],DF[,x])
pvalue <- cor.result$p.value
estimate <- cor.result$estimate
return(data.frame(pvalue = pvalue, estimate = estimate))
})
)


And R gives me a similar error



Error: object 'cor.result' not found


I'm sure it's an easy fix but I can't seem to figure it out. Any help is more than welcome.



This is what I got after running



dput(head(SmallDataset[,1:5]))

structure(list(Species = c("Human.hsapiens", "Chimpanzee.ptroglodytes",
"Gorilla.ggorilla", "Orangutan.pabelii", "Gibbon.nleucogenys",
"Macaque.mmulatta"), Time = c(0, 6.4, 8.61, 15.2, 19.43, 28.1
), ID1 = c(55030, 54539, 54937, 48897, 58160, 54686), ID2 = c(20485,
11907, 10571, 20974, 10462, 11149), ID3 = c(93914, 44482, 43705,
51144, 49485, 43908)), row.names = c(NA, -6L), class = c("tbl_df",
"tbl", "data.frame"))






r






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited Nov 14 '18 at 20:36







Yaiza95

















asked Nov 14 '18 at 16:01









Yaiza95Yaiza95

113




113













  • You are trying to calculate correlations between your ID variables in columns 2 to 4 of DF and Time? Is that correct?

    – Cleland
    Nov 14 '18 at 16:10











  • I am trying to correlate the first column with the rest, as in 1st and 2nd, 1st and 3rd, 1st and 4th

    – Yaiza95
    Nov 14 '18 at 16:14



















  • You are trying to calculate correlations between your ID variables in columns 2 to 4 of DF and Time? Is that correct?

    – Cleland
    Nov 14 '18 at 16:10











  • I am trying to correlate the first column with the rest, as in 1st and 2nd, 1st and 3rd, 1st and 4th

    – Yaiza95
    Nov 14 '18 at 16:14

















You are trying to calculate correlations between your ID variables in columns 2 to 4 of DF and Time? Is that correct?

– Cleland
Nov 14 '18 at 16:10





You are trying to calculate correlations between your ID variables in columns 2 to 4 of DF and Time? Is that correct?

– Cleland
Nov 14 '18 at 16:10













I am trying to correlate the first column with the rest, as in 1st and 2nd, 1st and 3rd, 1st and 4th

– Yaiza95
Nov 14 '18 at 16:14





I am trying to correlate the first column with the rest, as in 1st and 2nd, 1st and 3rd, 1st and 4th

– Yaiza95
Nov 14 '18 at 16:14












2 Answers
2






active

oldest

votes


















1














My solution involves defining a function within a lapply call



##
library(dplyr)

###Create dataframe
Time <- c(0, 6.4, 8.6, 15.2, 19.4, 28.1, 42.6, 73, 73, 85, 88, 88, 88, 88, 88, 89)
ID1 <- c(55030, 54539, 54937, 48897, 58160, 54686, 55393, 47191, 39805, 37601, 51328, 28882, 45587, 60061, 31892, 28670)
ID2 <- c(20485, 11907, 10571, 20974, 10462, 11149, 20970, NA, NA, 9295, NA, 8714, 24446, 10748, 9037, 11859)
ID3 <- c(93914, 44482, 43705, 51144, 49485, 43908, 44324, 37342, 18872, 39660,61673, 43837, 36528, 44738, 41648, 11100)
DF <- data.frame (Time, ID1, ID2, ID3)

##Run the correlations
l2 <- lapply(2:4, function(i)cor.test(DF$Time, DF[,i]))

##Define function to extract p_value and coefficients
l3 <- lapply(l2, function(i){
return(tibble(estimate = i$estimate,
p_value = i$p.value))
})

##Create a dataframe with information
l4 <- bind_rows(l3) %>% mutate(ID = paste0("ID", 1:3)) ##Data frame with info

l4





share|improve this answer


























  • You could also use the tidy function from the broom package to extract the estimates and p.values. sapply(2:4, function(i) { cor.test(DF$Time, DF[,i]) %>% tidy() %>% select(estimate, p.value) }) %>% t() %>% as.data.frame() %>% mutate(ID = paste0("ID", 1:3))

    – Jordo82
    Nov 14 '18 at 16:24













  • Will edit to reflect that. Thanks for flagging @Parfait

    – Harro Cyranka
    Nov 14 '18 at 16:25













  • Thank you, it works on the small DF, but when I try to apply it to the larger one I get this error: 'x' and 'y' must have the same length , even though if I ask for the length of both elements it says it's the same length

    – Yaiza95
    Nov 14 '18 at 20:03













  • Where is it specifically breaking? When you run the correlations? When you extract the coefficients? Or when you create the last data frame

    – Harro Cyranka
    Nov 14 '18 at 20:09











  • It breaks when I run l2: l2 <- lapply(3:11, function(i)cor.test(SmallDataset$Time, SmallDataset[,i])) Traceback: Error in cor.test.default(SmallDataset$Time, SmallDataset[, i]) : 'x' and 'y' must have the same length 5. stop("'x' and 'y' must have the same length") 4. cor.test.default(SmallDataset$Time, SmallDataset[, i]) 3. cor.test(SmallDataset$Time, SmallDataset[, i]) 2. FUN(X[[i]], ...) 1. lapply(3:11, function(i) cor.test(SmallDataset$Time, SmallDataset[, i]))

    – Yaiza95
    Nov 14 '18 at 20:39



















0














Consider building a list of data frames witih lapply (an iteration function similar to for but builds a list of objects of equal length as input). Afterwards, row bind all data frame elements together:



results <- lapply(2:4, function(i){      
test <- cor.test(DF[,1], DF[,i])

data.frame(ID = names(DF)[i],
estimate = unname(test$estimate),
pvalues = unname(test$p.value))
})

final_df <- do.call(rbind, results)
final_df

# ID estimate pvalues
# 1 ID1 -0.6238591 0.009805341
# 2 ID2 -0.2270515 0.455676037
# 3 ID3 -0.4964092 0.050481533


NOTE: Your posted data for Time is missing an observation and cannot immediately be cast into data.frame() with other vectors. To resolve, I supplemented a 6th 88 at end:



Time <- c(0, 6.4, 8.6, 15.2, 19.4, 28.1, 42.6, 73, 73, 85, 88, 88, 88, 88, 88, 88)


Using posted SmallDataset:



SmallDataset <- structure(...)

results <- lapply(3:5, function(i){
test <- cor.test(SmallDataset$Time, SmallDataset[,i])

data.frame(ID = names(SmallDataset)[i],
estimate = unname(test$estimate),
pvalues = unname(test$p.value))
})

final_df <- do.call(rbind, results)
final_df

# ID estimate pvalues
# 1 ID1 0.03251407 0.9512461
# 2 ID2 -0.41733336 0.4103428
# 3 ID3 -0.60732484 0.2010166





share|improve this answer


























  • Thank you, but when I try it on the larger dataframe I get this : Error in cor.test.default(SmallDataset[, 2], SmallDataset[, i]) : 'x' must be a numeric vector. Even though all vectors are numeric

    – Yaiza95
    Nov 14 '18 at 20:04











  • Please edit your post with a sample of SmallDataset in your post (first few rows and cols): dput(head(SmallDataset[,1:5])). It will look like gobbledygook but we know how to use it. We can help format in your post as well.

    – Parfait
    Nov 14 '18 at 20:20













  • Done, I edited the original post

    – Yaiza95
    Nov 14 '18 at 20:37











  • I am unable to reproduce any issue with the small sample. See update. Did you properly replace all DF with SmallDataset? Be sure names and column numbers are correct.

    – Parfait
    Nov 14 '18 at 20:44













  • So DF I made manually from the SmallDataset. So maybe there the type of data changes. SmallDataset is a 66 lines and 11 column frame. I triple checked all names and columns and I still get the same error

    – Yaiza95
    Nov 14 '18 at 20:51











Your Answer






StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53304266%2fgetting-estimate-and-p-value-into-dataframe%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























2 Answers
2






active

oldest

votes








2 Answers
2






active

oldest

votes









active

oldest

votes






active

oldest

votes









1














My solution involves defining a function within a lapply call



##
library(dplyr)

###Create dataframe
Time <- c(0, 6.4, 8.6, 15.2, 19.4, 28.1, 42.6, 73, 73, 85, 88, 88, 88, 88, 88, 89)
ID1 <- c(55030, 54539, 54937, 48897, 58160, 54686, 55393, 47191, 39805, 37601, 51328, 28882, 45587, 60061, 31892, 28670)
ID2 <- c(20485, 11907, 10571, 20974, 10462, 11149, 20970, NA, NA, 9295, NA, 8714, 24446, 10748, 9037, 11859)
ID3 <- c(93914, 44482, 43705, 51144, 49485, 43908, 44324, 37342, 18872, 39660,61673, 43837, 36528, 44738, 41648, 11100)
DF <- data.frame (Time, ID1, ID2, ID3)

##Run the correlations
l2 <- lapply(2:4, function(i)cor.test(DF$Time, DF[,i]))

##Define function to extract p_value and coefficients
l3 <- lapply(l2, function(i){
return(tibble(estimate = i$estimate,
p_value = i$p.value))
})

##Create a dataframe with information
l4 <- bind_rows(l3) %>% mutate(ID = paste0("ID", 1:3)) ##Data frame with info

l4





share|improve this answer


























  • You could also use the tidy function from the broom package to extract the estimates and p.values. sapply(2:4, function(i) { cor.test(DF$Time, DF[,i]) %>% tidy() %>% select(estimate, p.value) }) %>% t() %>% as.data.frame() %>% mutate(ID = paste0("ID", 1:3))

    – Jordo82
    Nov 14 '18 at 16:24













  • Will edit to reflect that. Thanks for flagging @Parfait

    – Harro Cyranka
    Nov 14 '18 at 16:25













  • Thank you, it works on the small DF, but when I try to apply it to the larger one I get this error: 'x' and 'y' must have the same length , even though if I ask for the length of both elements it says it's the same length

    – Yaiza95
    Nov 14 '18 at 20:03













  • Where is it specifically breaking? When you run the correlations? When you extract the coefficients? Or when you create the last data frame

    – Harro Cyranka
    Nov 14 '18 at 20:09











  • It breaks when I run l2: l2 <- lapply(3:11, function(i)cor.test(SmallDataset$Time, SmallDataset[,i])) Traceback: Error in cor.test.default(SmallDataset$Time, SmallDataset[, i]) : 'x' and 'y' must have the same length 5. stop("'x' and 'y' must have the same length") 4. cor.test.default(SmallDataset$Time, SmallDataset[, i]) 3. cor.test(SmallDataset$Time, SmallDataset[, i]) 2. FUN(X[[i]], ...) 1. lapply(3:11, function(i) cor.test(SmallDataset$Time, SmallDataset[, i]))

    – Yaiza95
    Nov 14 '18 at 20:39
















1














My solution involves defining a function within a lapply call



##
library(dplyr)

###Create dataframe
Time <- c(0, 6.4, 8.6, 15.2, 19.4, 28.1, 42.6, 73, 73, 85, 88, 88, 88, 88, 88, 89)
ID1 <- c(55030, 54539, 54937, 48897, 58160, 54686, 55393, 47191, 39805, 37601, 51328, 28882, 45587, 60061, 31892, 28670)
ID2 <- c(20485, 11907, 10571, 20974, 10462, 11149, 20970, NA, NA, 9295, NA, 8714, 24446, 10748, 9037, 11859)
ID3 <- c(93914, 44482, 43705, 51144, 49485, 43908, 44324, 37342, 18872, 39660,61673, 43837, 36528, 44738, 41648, 11100)
DF <- data.frame (Time, ID1, ID2, ID3)

##Run the correlations
l2 <- lapply(2:4, function(i)cor.test(DF$Time, DF[,i]))

##Define function to extract p_value and coefficients
l3 <- lapply(l2, function(i){
return(tibble(estimate = i$estimate,
p_value = i$p.value))
})

##Create a dataframe with information
l4 <- bind_rows(l3) %>% mutate(ID = paste0("ID", 1:3)) ##Data frame with info

l4





share|improve this answer


























  • You could also use the tidy function from the broom package to extract the estimates and p.values. sapply(2:4, function(i) { cor.test(DF$Time, DF[,i]) %>% tidy() %>% select(estimate, p.value) }) %>% t() %>% as.data.frame() %>% mutate(ID = paste0("ID", 1:3))

    – Jordo82
    Nov 14 '18 at 16:24













  • Will edit to reflect that. Thanks for flagging @Parfait

    – Harro Cyranka
    Nov 14 '18 at 16:25













  • Thank you, it works on the small DF, but when I try to apply it to the larger one I get this error: 'x' and 'y' must have the same length , even though if I ask for the length of both elements it says it's the same length

    – Yaiza95
    Nov 14 '18 at 20:03













  • Where is it specifically breaking? When you run the correlations? When you extract the coefficients? Or when you create the last data frame

    – Harro Cyranka
    Nov 14 '18 at 20:09











  • It breaks when I run l2: l2 <- lapply(3:11, function(i)cor.test(SmallDataset$Time, SmallDataset[,i])) Traceback: Error in cor.test.default(SmallDataset$Time, SmallDataset[, i]) : 'x' and 'y' must have the same length 5. stop("'x' and 'y' must have the same length") 4. cor.test.default(SmallDataset$Time, SmallDataset[, i]) 3. cor.test(SmallDataset$Time, SmallDataset[, i]) 2. FUN(X[[i]], ...) 1. lapply(3:11, function(i) cor.test(SmallDataset$Time, SmallDataset[, i]))

    – Yaiza95
    Nov 14 '18 at 20:39














1












1








1







My solution involves defining a function within a lapply call



##
library(dplyr)

###Create dataframe
Time <- c(0, 6.4, 8.6, 15.2, 19.4, 28.1, 42.6, 73, 73, 85, 88, 88, 88, 88, 88, 89)
ID1 <- c(55030, 54539, 54937, 48897, 58160, 54686, 55393, 47191, 39805, 37601, 51328, 28882, 45587, 60061, 31892, 28670)
ID2 <- c(20485, 11907, 10571, 20974, 10462, 11149, 20970, NA, NA, 9295, NA, 8714, 24446, 10748, 9037, 11859)
ID3 <- c(93914, 44482, 43705, 51144, 49485, 43908, 44324, 37342, 18872, 39660,61673, 43837, 36528, 44738, 41648, 11100)
DF <- data.frame (Time, ID1, ID2, ID3)

##Run the correlations
l2 <- lapply(2:4, function(i)cor.test(DF$Time, DF[,i]))

##Define function to extract p_value and coefficients
l3 <- lapply(l2, function(i){
return(tibble(estimate = i$estimate,
p_value = i$p.value))
})

##Create a dataframe with information
l4 <- bind_rows(l3) %>% mutate(ID = paste0("ID", 1:3)) ##Data frame with info

l4





share|improve this answer















My solution involves defining a function within a lapply call



##
library(dplyr)

###Create dataframe
Time <- c(0, 6.4, 8.6, 15.2, 19.4, 28.1, 42.6, 73, 73, 85, 88, 88, 88, 88, 88, 89)
ID1 <- c(55030, 54539, 54937, 48897, 58160, 54686, 55393, 47191, 39805, 37601, 51328, 28882, 45587, 60061, 31892, 28670)
ID2 <- c(20485, 11907, 10571, 20974, 10462, 11149, 20970, NA, NA, 9295, NA, 8714, 24446, 10748, 9037, 11859)
ID3 <- c(93914, 44482, 43705, 51144, 49485, 43908, 44324, 37342, 18872, 39660,61673, 43837, 36528, 44738, 41648, 11100)
DF <- data.frame (Time, ID1, ID2, ID3)

##Run the correlations
l2 <- lapply(2:4, function(i)cor.test(DF$Time, DF[,i]))

##Define function to extract p_value and coefficients
l3 <- lapply(l2, function(i){
return(tibble(estimate = i$estimate,
p_value = i$p.value))
})

##Create a dataframe with information
l4 <- bind_rows(l3) %>% mutate(ID = paste0("ID", 1:3)) ##Data frame with info

l4






share|improve this answer














share|improve this answer



share|improve this answer








edited Nov 14 '18 at 16:26

























answered Nov 14 '18 at 16:12









Harro CyrankaHarro Cyranka

1,3861614




1,3861614













  • You could also use the tidy function from the broom package to extract the estimates and p.values. sapply(2:4, function(i) { cor.test(DF$Time, DF[,i]) %>% tidy() %>% select(estimate, p.value) }) %>% t() %>% as.data.frame() %>% mutate(ID = paste0("ID", 1:3))

    – Jordo82
    Nov 14 '18 at 16:24













  • Will edit to reflect that. Thanks for flagging @Parfait

    – Harro Cyranka
    Nov 14 '18 at 16:25













  • Thank you, it works on the small DF, but when I try to apply it to the larger one I get this error: 'x' and 'y' must have the same length , even though if I ask for the length of both elements it says it's the same length

    – Yaiza95
    Nov 14 '18 at 20:03













  • Where is it specifically breaking? When you run the correlations? When you extract the coefficients? Or when you create the last data frame

    – Harro Cyranka
    Nov 14 '18 at 20:09











  • It breaks when I run l2: l2 <- lapply(3:11, function(i)cor.test(SmallDataset$Time, SmallDataset[,i])) Traceback: Error in cor.test.default(SmallDataset$Time, SmallDataset[, i]) : 'x' and 'y' must have the same length 5. stop("'x' and 'y' must have the same length") 4. cor.test.default(SmallDataset$Time, SmallDataset[, i]) 3. cor.test(SmallDataset$Time, SmallDataset[, i]) 2. FUN(X[[i]], ...) 1. lapply(3:11, function(i) cor.test(SmallDataset$Time, SmallDataset[, i]))

    – Yaiza95
    Nov 14 '18 at 20:39



















  • You could also use the tidy function from the broom package to extract the estimates and p.values. sapply(2:4, function(i) { cor.test(DF$Time, DF[,i]) %>% tidy() %>% select(estimate, p.value) }) %>% t() %>% as.data.frame() %>% mutate(ID = paste0("ID", 1:3))

    – Jordo82
    Nov 14 '18 at 16:24













  • Will edit to reflect that. Thanks for flagging @Parfait

    – Harro Cyranka
    Nov 14 '18 at 16:25













  • Thank you, it works on the small DF, but when I try to apply it to the larger one I get this error: 'x' and 'y' must have the same length , even though if I ask for the length of both elements it says it's the same length

    – Yaiza95
    Nov 14 '18 at 20:03













  • Where is it specifically breaking? When you run the correlations? When you extract the coefficients? Or when you create the last data frame

    – Harro Cyranka
    Nov 14 '18 at 20:09











  • It breaks when I run l2: l2 <- lapply(3:11, function(i)cor.test(SmallDataset$Time, SmallDataset[,i])) Traceback: Error in cor.test.default(SmallDataset$Time, SmallDataset[, i]) : 'x' and 'y' must have the same length 5. stop("'x' and 'y' must have the same length") 4. cor.test.default(SmallDataset$Time, SmallDataset[, i]) 3. cor.test(SmallDataset$Time, SmallDataset[, i]) 2. FUN(X[[i]], ...) 1. lapply(3:11, function(i) cor.test(SmallDataset$Time, SmallDataset[, i]))

    – Yaiza95
    Nov 14 '18 at 20:39

















You could also use the tidy function from the broom package to extract the estimates and p.values. sapply(2:4, function(i) { cor.test(DF$Time, DF[,i]) %>% tidy() %>% select(estimate, p.value) }) %>% t() %>% as.data.frame() %>% mutate(ID = paste0("ID", 1:3))

– Jordo82
Nov 14 '18 at 16:24







You could also use the tidy function from the broom package to extract the estimates and p.values. sapply(2:4, function(i) { cor.test(DF$Time, DF[,i]) %>% tidy() %>% select(estimate, p.value) }) %>% t() %>% as.data.frame() %>% mutate(ID = paste0("ID", 1:3))

– Jordo82
Nov 14 '18 at 16:24















Will edit to reflect that. Thanks for flagging @Parfait

– Harro Cyranka
Nov 14 '18 at 16:25







Will edit to reflect that. Thanks for flagging @Parfait

– Harro Cyranka
Nov 14 '18 at 16:25















Thank you, it works on the small DF, but when I try to apply it to the larger one I get this error: 'x' and 'y' must have the same length , even though if I ask for the length of both elements it says it's the same length

– Yaiza95
Nov 14 '18 at 20:03







Thank you, it works on the small DF, but when I try to apply it to the larger one I get this error: 'x' and 'y' must have the same length , even though if I ask for the length of both elements it says it's the same length

– Yaiza95
Nov 14 '18 at 20:03















Where is it specifically breaking? When you run the correlations? When you extract the coefficients? Or when you create the last data frame

– Harro Cyranka
Nov 14 '18 at 20:09





Where is it specifically breaking? When you run the correlations? When you extract the coefficients? Or when you create the last data frame

– Harro Cyranka
Nov 14 '18 at 20:09













It breaks when I run l2: l2 <- lapply(3:11, function(i)cor.test(SmallDataset$Time, SmallDataset[,i])) Traceback: Error in cor.test.default(SmallDataset$Time, SmallDataset[, i]) : 'x' and 'y' must have the same length 5. stop("'x' and 'y' must have the same length") 4. cor.test.default(SmallDataset$Time, SmallDataset[, i]) 3. cor.test(SmallDataset$Time, SmallDataset[, i]) 2. FUN(X[[i]], ...) 1. lapply(3:11, function(i) cor.test(SmallDataset$Time, SmallDataset[, i]))

– Yaiza95
Nov 14 '18 at 20:39





It breaks when I run l2: l2 <- lapply(3:11, function(i)cor.test(SmallDataset$Time, SmallDataset[,i])) Traceback: Error in cor.test.default(SmallDataset$Time, SmallDataset[, i]) : 'x' and 'y' must have the same length 5. stop("'x' and 'y' must have the same length") 4. cor.test.default(SmallDataset$Time, SmallDataset[, i]) 3. cor.test(SmallDataset$Time, SmallDataset[, i]) 2. FUN(X[[i]], ...) 1. lapply(3:11, function(i) cor.test(SmallDataset$Time, SmallDataset[, i]))

– Yaiza95
Nov 14 '18 at 20:39













0














Consider building a list of data frames witih lapply (an iteration function similar to for but builds a list of objects of equal length as input). Afterwards, row bind all data frame elements together:



results <- lapply(2:4, function(i){      
test <- cor.test(DF[,1], DF[,i])

data.frame(ID = names(DF)[i],
estimate = unname(test$estimate),
pvalues = unname(test$p.value))
})

final_df <- do.call(rbind, results)
final_df

# ID estimate pvalues
# 1 ID1 -0.6238591 0.009805341
# 2 ID2 -0.2270515 0.455676037
# 3 ID3 -0.4964092 0.050481533


NOTE: Your posted data for Time is missing an observation and cannot immediately be cast into data.frame() with other vectors. To resolve, I supplemented a 6th 88 at end:



Time <- c(0, 6.4, 8.6, 15.2, 19.4, 28.1, 42.6, 73, 73, 85, 88, 88, 88, 88, 88, 88)


Using posted SmallDataset:



SmallDataset <- structure(...)

results <- lapply(3:5, function(i){
test <- cor.test(SmallDataset$Time, SmallDataset[,i])

data.frame(ID = names(SmallDataset)[i],
estimate = unname(test$estimate),
pvalues = unname(test$p.value))
})

final_df <- do.call(rbind, results)
final_df

# ID estimate pvalues
# 1 ID1 0.03251407 0.9512461
# 2 ID2 -0.41733336 0.4103428
# 3 ID3 -0.60732484 0.2010166





share|improve this answer


























  • Thank you, but when I try it on the larger dataframe I get this : Error in cor.test.default(SmallDataset[, 2], SmallDataset[, i]) : 'x' must be a numeric vector. Even though all vectors are numeric

    – Yaiza95
    Nov 14 '18 at 20:04











  • Please edit your post with a sample of SmallDataset in your post (first few rows and cols): dput(head(SmallDataset[,1:5])). It will look like gobbledygook but we know how to use it. We can help format in your post as well.

    – Parfait
    Nov 14 '18 at 20:20













  • Done, I edited the original post

    – Yaiza95
    Nov 14 '18 at 20:37











  • I am unable to reproduce any issue with the small sample. See update. Did you properly replace all DF with SmallDataset? Be sure names and column numbers are correct.

    – Parfait
    Nov 14 '18 at 20:44













  • So DF I made manually from the SmallDataset. So maybe there the type of data changes. SmallDataset is a 66 lines and 11 column frame. I triple checked all names and columns and I still get the same error

    – Yaiza95
    Nov 14 '18 at 20:51
















0














Consider building a list of data frames witih lapply (an iteration function similar to for but builds a list of objects of equal length as input). Afterwards, row bind all data frame elements together:



results <- lapply(2:4, function(i){      
test <- cor.test(DF[,1], DF[,i])

data.frame(ID = names(DF)[i],
estimate = unname(test$estimate),
pvalues = unname(test$p.value))
})

final_df <- do.call(rbind, results)
final_df

# ID estimate pvalues
# 1 ID1 -0.6238591 0.009805341
# 2 ID2 -0.2270515 0.455676037
# 3 ID3 -0.4964092 0.050481533


NOTE: Your posted data for Time is missing an observation and cannot immediately be cast into data.frame() with other vectors. To resolve, I supplemented a 6th 88 at end:



Time <- c(0, 6.4, 8.6, 15.2, 19.4, 28.1, 42.6, 73, 73, 85, 88, 88, 88, 88, 88, 88)


Using posted SmallDataset:



SmallDataset <- structure(...)

results <- lapply(3:5, function(i){
test <- cor.test(SmallDataset$Time, SmallDataset[,i])

data.frame(ID = names(SmallDataset)[i],
estimate = unname(test$estimate),
pvalues = unname(test$p.value))
})

final_df <- do.call(rbind, results)
final_df

# ID estimate pvalues
# 1 ID1 0.03251407 0.9512461
# 2 ID2 -0.41733336 0.4103428
# 3 ID3 -0.60732484 0.2010166





share|improve this answer


























  • Thank you, but when I try it on the larger dataframe I get this : Error in cor.test.default(SmallDataset[, 2], SmallDataset[, i]) : 'x' must be a numeric vector. Even though all vectors are numeric

    – Yaiza95
    Nov 14 '18 at 20:04











  • Please edit your post with a sample of SmallDataset in your post (first few rows and cols): dput(head(SmallDataset[,1:5])). It will look like gobbledygook but we know how to use it. We can help format in your post as well.

    – Parfait
    Nov 14 '18 at 20:20













  • Done, I edited the original post

    – Yaiza95
    Nov 14 '18 at 20:37











  • I am unable to reproduce any issue with the small sample. See update. Did you properly replace all DF with SmallDataset? Be sure names and column numbers are correct.

    – Parfait
    Nov 14 '18 at 20:44













  • So DF I made manually from the SmallDataset. So maybe there the type of data changes. SmallDataset is a 66 lines and 11 column frame. I triple checked all names and columns and I still get the same error

    – Yaiza95
    Nov 14 '18 at 20:51














0












0








0







Consider building a list of data frames witih lapply (an iteration function similar to for but builds a list of objects of equal length as input). Afterwards, row bind all data frame elements together:



results <- lapply(2:4, function(i){      
test <- cor.test(DF[,1], DF[,i])

data.frame(ID = names(DF)[i],
estimate = unname(test$estimate),
pvalues = unname(test$p.value))
})

final_df <- do.call(rbind, results)
final_df

# ID estimate pvalues
# 1 ID1 -0.6238591 0.009805341
# 2 ID2 -0.2270515 0.455676037
# 3 ID3 -0.4964092 0.050481533


NOTE: Your posted data for Time is missing an observation and cannot immediately be cast into data.frame() with other vectors. To resolve, I supplemented a 6th 88 at end:



Time <- c(0, 6.4, 8.6, 15.2, 19.4, 28.1, 42.6, 73, 73, 85, 88, 88, 88, 88, 88, 88)


Using posted SmallDataset:



SmallDataset <- structure(...)

results <- lapply(3:5, function(i){
test <- cor.test(SmallDataset$Time, SmallDataset[,i])

data.frame(ID = names(SmallDataset)[i],
estimate = unname(test$estimate),
pvalues = unname(test$p.value))
})

final_df <- do.call(rbind, results)
final_df

# ID estimate pvalues
# 1 ID1 0.03251407 0.9512461
# 2 ID2 -0.41733336 0.4103428
# 3 ID3 -0.60732484 0.2010166





share|improve this answer















Consider building a list of data frames witih lapply (an iteration function similar to for but builds a list of objects of equal length as input). Afterwards, row bind all data frame elements together:



results <- lapply(2:4, function(i){      
test <- cor.test(DF[,1], DF[,i])

data.frame(ID = names(DF)[i],
estimate = unname(test$estimate),
pvalues = unname(test$p.value))
})

final_df <- do.call(rbind, results)
final_df

# ID estimate pvalues
# 1 ID1 -0.6238591 0.009805341
# 2 ID2 -0.2270515 0.455676037
# 3 ID3 -0.4964092 0.050481533


NOTE: Your posted data for Time is missing an observation and cannot immediately be cast into data.frame() with other vectors. To resolve, I supplemented a 6th 88 at end:



Time <- c(0, 6.4, 8.6, 15.2, 19.4, 28.1, 42.6, 73, 73, 85, 88, 88, 88, 88, 88, 88)


Using posted SmallDataset:



SmallDataset <- structure(...)

results <- lapply(3:5, function(i){
test <- cor.test(SmallDataset$Time, SmallDataset[,i])

data.frame(ID = names(SmallDataset)[i],
estimate = unname(test$estimate),
pvalues = unname(test$p.value))
})

final_df <- do.call(rbind, results)
final_df

# ID estimate pvalues
# 1 ID1 0.03251407 0.9512461
# 2 ID2 -0.41733336 0.4103428
# 3 ID3 -0.60732484 0.2010166






share|improve this answer














share|improve this answer



share|improve this answer








edited Nov 14 '18 at 20:42

























answered Nov 14 '18 at 16:17









ParfaitParfait

51.8k84470




51.8k84470













  • Thank you, but when I try it on the larger dataframe I get this : Error in cor.test.default(SmallDataset[, 2], SmallDataset[, i]) : 'x' must be a numeric vector. Even though all vectors are numeric

    – Yaiza95
    Nov 14 '18 at 20:04











  • Please edit your post with a sample of SmallDataset in your post (first few rows and cols): dput(head(SmallDataset[,1:5])). It will look like gobbledygook but we know how to use it. We can help format in your post as well.

    – Parfait
    Nov 14 '18 at 20:20













  • Done, I edited the original post

    – Yaiza95
    Nov 14 '18 at 20:37











  • I am unable to reproduce any issue with the small sample. See update. Did you properly replace all DF with SmallDataset? Be sure names and column numbers are correct.

    – Parfait
    Nov 14 '18 at 20:44













  • So DF I made manually from the SmallDataset. So maybe there the type of data changes. SmallDataset is a 66 lines and 11 column frame. I triple checked all names and columns and I still get the same error

    – Yaiza95
    Nov 14 '18 at 20:51



















  • Thank you, but when I try it on the larger dataframe I get this : Error in cor.test.default(SmallDataset[, 2], SmallDataset[, i]) : 'x' must be a numeric vector. Even though all vectors are numeric

    – Yaiza95
    Nov 14 '18 at 20:04











  • Please edit your post with a sample of SmallDataset in your post (first few rows and cols): dput(head(SmallDataset[,1:5])). It will look like gobbledygook but we know how to use it. We can help format in your post as well.

    – Parfait
    Nov 14 '18 at 20:20













  • Done, I edited the original post

    – Yaiza95
    Nov 14 '18 at 20:37











  • I am unable to reproduce any issue with the small sample. See update. Did you properly replace all DF with SmallDataset? Be sure names and column numbers are correct.

    – Parfait
    Nov 14 '18 at 20:44













  • So DF I made manually from the SmallDataset. So maybe there the type of data changes. SmallDataset is a 66 lines and 11 column frame. I triple checked all names and columns and I still get the same error

    – Yaiza95
    Nov 14 '18 at 20:51

















Thank you, but when I try it on the larger dataframe I get this : Error in cor.test.default(SmallDataset[, 2], SmallDataset[, i]) : 'x' must be a numeric vector. Even though all vectors are numeric

– Yaiza95
Nov 14 '18 at 20:04





Thank you, but when I try it on the larger dataframe I get this : Error in cor.test.default(SmallDataset[, 2], SmallDataset[, i]) : 'x' must be a numeric vector. Even though all vectors are numeric

– Yaiza95
Nov 14 '18 at 20:04













Please edit your post with a sample of SmallDataset in your post (first few rows and cols): dput(head(SmallDataset[,1:5])). It will look like gobbledygook but we know how to use it. We can help format in your post as well.

– Parfait
Nov 14 '18 at 20:20







Please edit your post with a sample of SmallDataset in your post (first few rows and cols): dput(head(SmallDataset[,1:5])). It will look like gobbledygook but we know how to use it. We can help format in your post as well.

– Parfait
Nov 14 '18 at 20:20















Done, I edited the original post

– Yaiza95
Nov 14 '18 at 20:37





Done, I edited the original post

– Yaiza95
Nov 14 '18 at 20:37













I am unable to reproduce any issue with the small sample. See update. Did you properly replace all DF with SmallDataset? Be sure names and column numbers are correct.

– Parfait
Nov 14 '18 at 20:44







I am unable to reproduce any issue with the small sample. See update. Did you properly replace all DF with SmallDataset? Be sure names and column numbers are correct.

– Parfait
Nov 14 '18 at 20:44















So DF I made manually from the SmallDataset. So maybe there the type of data changes. SmallDataset is a 66 lines and 11 column frame. I triple checked all names and columns and I still get the same error

– Yaiza95
Nov 14 '18 at 20:51





So DF I made manually from the SmallDataset. So maybe there the type of data changes. SmallDataset is a 66 lines and 11 column frame. I triple checked all names and columns and I still get the same error

– Yaiza95
Nov 14 '18 at 20:51


















draft saved

draft discarded




















































Thanks for contributing an answer to Stack Overflow!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53304266%2fgetting-estimate-and-p-value-into-dataframe%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

Bressuire

Vorschmack

Quarantine