pandas groupby; if condition: sum else: max for given column based on another column












1














Say for df I do a groupby on group:



df = pd.DataFrame(np.random.rand(4,4), columns=list('abcd'))
df['group'] = [0, 0, 1, 1]


then I want to collapse the df so that A is summed if the sum of B is greater than 1 and I want the max of A if the sum of B is less than or equal to 1.



Then I want the min() of B and other various operations on the remaining columns.










share|improve this question



























    1














    Say for df I do a groupby on group:



    df = pd.DataFrame(np.random.rand(4,4), columns=list('abcd'))
    df['group'] = [0, 0, 1, 1]


    then I want to collapse the df so that A is summed if the sum of B is greater than 1 and I want the max of A if the sum of B is less than or equal to 1.



    Then I want the min() of B and other various operations on the remaining columns.










    share|improve this question

























      1












      1








      1







      Say for df I do a groupby on group:



      df = pd.DataFrame(np.random.rand(4,4), columns=list('abcd'))
      df['group'] = [0, 0, 1, 1]


      then I want to collapse the df so that A is summed if the sum of B is greater than 1 and I want the max of A if the sum of B is less than or equal to 1.



      Then I want the min() of B and other various operations on the remaining columns.










      share|improve this question













      Say for df I do a groupby on group:



      df = pd.DataFrame(np.random.rand(4,4), columns=list('abcd'))
      df['group'] = [0, 0, 1, 1]


      then I want to collapse the df so that A is summed if the sum of B is greater than 1 and I want the max of A if the sum of B is less than or equal to 1.



      Then I want the min() of B and other various operations on the remaining columns.







      python pandas






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked Nov 9 '18 at 23:39









      jchaykowjchaykow

      507318




      507318
























          2 Answers
          2






          active

          oldest

          votes


















          1














          For better performance use where:



          np.random.seed(15)
          N = 1000
          df = pd.DataFrame(np.random.rand(N,10), columns=list('abcdefghij'))
          df['group'] = np.random.randint(100, size=N)

          df_grouped = df.groupby('group')
          s1 = df_grouped.apply(lambda grp: grp['a'].sum() if grp['b'].sum() > 1 else grp['a'].max())
          print (s1)

          df_grouped = df.groupby('group')
          s2 = df_grouped['a'].sum().where(df_grouped['b'].sum() > 1, df_grouped['a'].max())
          print (s2)


          In [69]: %%timeit
          ...: df_grouped = df.groupby('group')
          ...: s1 = df_grouped.apply(lambda grp: grp['a'].sum() if grp['b'].sum() > 1 else grp['a'].max())
          ...:
          24.8 ms ± 228 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

          In [70]: %%timeit
          ...: df_grouped = df.groupby('group')
          ...: s2 = df_grouped['a'].sum().where(df_grouped['b'].sum() > 1, df_grouped['a'].max())
          ...:
          1.63 ms ± 58 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)





          share|improve this answer





























            0














            I figured it out with apply:



            df_grouped = df.groupby('group')
            df_grouped.apply(lambda grp: grp['a'].sum() if grp['b'].sum() > 1 else grp['a'].max())

            group
            0 0.834666
            1 1.096652
            dtype: float64





            share|improve this answer





















              Your Answer






              StackExchange.ifUsing("editor", function () {
              StackExchange.using("externalEditor", function () {
              StackExchange.using("snippets", function () {
              StackExchange.snippets.init();
              });
              });
              }, "code-snippets");

              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "1"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              autoActivateHeartbeat: false,
              convertImagesToLinks: true,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: 10,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53234634%2fpandas-groupby-if-condition-sum-else-max-for-given-column-based-on-another-co%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes









              1














              For better performance use where:



              np.random.seed(15)
              N = 1000
              df = pd.DataFrame(np.random.rand(N,10), columns=list('abcdefghij'))
              df['group'] = np.random.randint(100, size=N)

              df_grouped = df.groupby('group')
              s1 = df_grouped.apply(lambda grp: grp['a'].sum() if grp['b'].sum() > 1 else grp['a'].max())
              print (s1)

              df_grouped = df.groupby('group')
              s2 = df_grouped['a'].sum().where(df_grouped['b'].sum() > 1, df_grouped['a'].max())
              print (s2)


              In [69]: %%timeit
              ...: df_grouped = df.groupby('group')
              ...: s1 = df_grouped.apply(lambda grp: grp['a'].sum() if grp['b'].sum() > 1 else grp['a'].max())
              ...:
              24.8 ms ± 228 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

              In [70]: %%timeit
              ...: df_grouped = df.groupby('group')
              ...: s2 = df_grouped['a'].sum().where(df_grouped['b'].sum() > 1, df_grouped['a'].max())
              ...:
              1.63 ms ± 58 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)





              share|improve this answer


























                1














                For better performance use where:



                np.random.seed(15)
                N = 1000
                df = pd.DataFrame(np.random.rand(N,10), columns=list('abcdefghij'))
                df['group'] = np.random.randint(100, size=N)

                df_grouped = df.groupby('group')
                s1 = df_grouped.apply(lambda grp: grp['a'].sum() if grp['b'].sum() > 1 else grp['a'].max())
                print (s1)

                df_grouped = df.groupby('group')
                s2 = df_grouped['a'].sum().where(df_grouped['b'].sum() > 1, df_grouped['a'].max())
                print (s2)


                In [69]: %%timeit
                ...: df_grouped = df.groupby('group')
                ...: s1 = df_grouped.apply(lambda grp: grp['a'].sum() if grp['b'].sum() > 1 else grp['a'].max())
                ...:
                24.8 ms ± 228 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

                In [70]: %%timeit
                ...: df_grouped = df.groupby('group')
                ...: s2 = df_grouped['a'].sum().where(df_grouped['b'].sum() > 1, df_grouped['a'].max())
                ...:
                1.63 ms ± 58 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)





                share|improve this answer
























                  1












                  1








                  1






                  For better performance use where:



                  np.random.seed(15)
                  N = 1000
                  df = pd.DataFrame(np.random.rand(N,10), columns=list('abcdefghij'))
                  df['group'] = np.random.randint(100, size=N)

                  df_grouped = df.groupby('group')
                  s1 = df_grouped.apply(lambda grp: grp['a'].sum() if grp['b'].sum() > 1 else grp['a'].max())
                  print (s1)

                  df_grouped = df.groupby('group')
                  s2 = df_grouped['a'].sum().where(df_grouped['b'].sum() > 1, df_grouped['a'].max())
                  print (s2)


                  In [69]: %%timeit
                  ...: df_grouped = df.groupby('group')
                  ...: s1 = df_grouped.apply(lambda grp: grp['a'].sum() if grp['b'].sum() > 1 else grp['a'].max())
                  ...:
                  24.8 ms ± 228 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

                  In [70]: %%timeit
                  ...: df_grouped = df.groupby('group')
                  ...: s2 = df_grouped['a'].sum().where(df_grouped['b'].sum() > 1, df_grouped['a'].max())
                  ...:
                  1.63 ms ± 58 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)





                  share|improve this answer












                  For better performance use where:



                  np.random.seed(15)
                  N = 1000
                  df = pd.DataFrame(np.random.rand(N,10), columns=list('abcdefghij'))
                  df['group'] = np.random.randint(100, size=N)

                  df_grouped = df.groupby('group')
                  s1 = df_grouped.apply(lambda grp: grp['a'].sum() if grp['b'].sum() > 1 else grp['a'].max())
                  print (s1)

                  df_grouped = df.groupby('group')
                  s2 = df_grouped['a'].sum().where(df_grouped['b'].sum() > 1, df_grouped['a'].max())
                  print (s2)


                  In [69]: %%timeit
                  ...: df_grouped = df.groupby('group')
                  ...: s1 = df_grouped.apply(lambda grp: grp['a'].sum() if grp['b'].sum() > 1 else grp['a'].max())
                  ...:
                  24.8 ms ± 228 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

                  In [70]: %%timeit
                  ...: df_grouped = df.groupby('group')
                  ...: s2 = df_grouped['a'].sum().where(df_grouped['b'].sum() > 1, df_grouped['a'].max())
                  ...:
                  1.63 ms ± 58 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)






                  share|improve this answer












                  share|improve this answer



                  share|improve this answer










                  answered Nov 13 '18 at 7:32









                  jezraeljezrael

                  322k23265342




                  322k23265342

























                      0














                      I figured it out with apply:



                      df_grouped = df.groupby('group')
                      df_grouped.apply(lambda grp: grp['a'].sum() if grp['b'].sum() > 1 else grp['a'].max())

                      group
                      0 0.834666
                      1 1.096652
                      dtype: float64





                      share|improve this answer


























                        0














                        I figured it out with apply:



                        df_grouped = df.groupby('group')
                        df_grouped.apply(lambda grp: grp['a'].sum() if grp['b'].sum() > 1 else grp['a'].max())

                        group
                        0 0.834666
                        1 1.096652
                        dtype: float64





                        share|improve this answer
























                          0












                          0








                          0






                          I figured it out with apply:



                          df_grouped = df.groupby('group')
                          df_grouped.apply(lambda grp: grp['a'].sum() if grp['b'].sum() > 1 else grp['a'].max())

                          group
                          0 0.834666
                          1 1.096652
                          dtype: float64





                          share|improve this answer












                          I figured it out with apply:



                          df_grouped = df.groupby('group')
                          df_grouped.apply(lambda grp: grp['a'].sum() if grp['b'].sum() > 1 else grp['a'].max())

                          group
                          0 0.834666
                          1 1.096652
                          dtype: float64






                          share|improve this answer












                          share|improve this answer



                          share|improve this answer










                          answered Nov 9 '18 at 23:56









                          jchaykowjchaykow

                          507318




                          507318






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to Stack Overflow!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              To learn more, see our tips on writing great answers.





                              Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                              Please pay close attention to the following guidance:


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53234634%2fpandas-groupby-if-condition-sum-else-max-for-given-column-based-on-another-co%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              Bressuire

                              Vorschmack

                              Quarantine