pandas groupby; if condition: sum else: max for given column based on another column
Say for df
I do a groupby on group
:
df = pd.DataFrame(np.random.rand(4,4), columns=list('abcd'))
df['group'] = [0, 0, 1, 1]
then I want to collapse the df so that A is summed if the sum of B is greater than 1 and I want the max of A if the sum of B is less than or equal to 1.
Then I want the min() of B and other various operations on the remaining columns.
python pandas
add a comment |
Say for df
I do a groupby on group
:
df = pd.DataFrame(np.random.rand(4,4), columns=list('abcd'))
df['group'] = [0, 0, 1, 1]
then I want to collapse the df so that A is summed if the sum of B is greater than 1 and I want the max of A if the sum of B is less than or equal to 1.
Then I want the min() of B and other various operations on the remaining columns.
python pandas
add a comment |
Say for df
I do a groupby on group
:
df = pd.DataFrame(np.random.rand(4,4), columns=list('abcd'))
df['group'] = [0, 0, 1, 1]
then I want to collapse the df so that A is summed if the sum of B is greater than 1 and I want the max of A if the sum of B is less than or equal to 1.
Then I want the min() of B and other various operations on the remaining columns.
python pandas
Say for df
I do a groupby on group
:
df = pd.DataFrame(np.random.rand(4,4), columns=list('abcd'))
df['group'] = [0, 0, 1, 1]
then I want to collapse the df so that A is summed if the sum of B is greater than 1 and I want the max of A if the sum of B is less than or equal to 1.
Then I want the min() of B and other various operations on the remaining columns.
python pandas
python pandas
asked Nov 9 '18 at 23:39
jchaykowjchaykow
507318
507318
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
For better performance use where
:
np.random.seed(15)
N = 1000
df = pd.DataFrame(np.random.rand(N,10), columns=list('abcdefghij'))
df['group'] = np.random.randint(100, size=N)
df_grouped = df.groupby('group')
s1 = df_grouped.apply(lambda grp: grp['a'].sum() if grp['b'].sum() > 1 else grp['a'].max())
print (s1)
df_grouped = df.groupby('group')
s2 = df_grouped['a'].sum().where(df_grouped['b'].sum() > 1, df_grouped['a'].max())
print (s2)
In [69]: %%timeit
...: df_grouped = df.groupby('group')
...: s1 = df_grouped.apply(lambda grp: grp['a'].sum() if grp['b'].sum() > 1 else grp['a'].max())
...:
24.8 ms ± 228 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
In [70]: %%timeit
...: df_grouped = df.groupby('group')
...: s2 = df_grouped['a'].sum().where(df_grouped['b'].sum() > 1, df_grouped['a'].max())
...:
1.63 ms ± 58 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
add a comment |
I figured it out with apply
:
df_grouped = df.groupby('group')
df_grouped.apply(lambda grp: grp['a'].sum() if grp['b'].sum() > 1 else grp['a'].max())
group
0 0.834666
1 1.096652
dtype: float64
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53234634%2fpandas-groupby-if-condition-sum-else-max-for-given-column-based-on-another-co%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
For better performance use where
:
np.random.seed(15)
N = 1000
df = pd.DataFrame(np.random.rand(N,10), columns=list('abcdefghij'))
df['group'] = np.random.randint(100, size=N)
df_grouped = df.groupby('group')
s1 = df_grouped.apply(lambda grp: grp['a'].sum() if grp['b'].sum() > 1 else grp['a'].max())
print (s1)
df_grouped = df.groupby('group')
s2 = df_grouped['a'].sum().where(df_grouped['b'].sum() > 1, df_grouped['a'].max())
print (s2)
In [69]: %%timeit
...: df_grouped = df.groupby('group')
...: s1 = df_grouped.apply(lambda grp: grp['a'].sum() if grp['b'].sum() > 1 else grp['a'].max())
...:
24.8 ms ± 228 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
In [70]: %%timeit
...: df_grouped = df.groupby('group')
...: s2 = df_grouped['a'].sum().where(df_grouped['b'].sum() > 1, df_grouped['a'].max())
...:
1.63 ms ± 58 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
add a comment |
For better performance use where
:
np.random.seed(15)
N = 1000
df = pd.DataFrame(np.random.rand(N,10), columns=list('abcdefghij'))
df['group'] = np.random.randint(100, size=N)
df_grouped = df.groupby('group')
s1 = df_grouped.apply(lambda grp: grp['a'].sum() if grp['b'].sum() > 1 else grp['a'].max())
print (s1)
df_grouped = df.groupby('group')
s2 = df_grouped['a'].sum().where(df_grouped['b'].sum() > 1, df_grouped['a'].max())
print (s2)
In [69]: %%timeit
...: df_grouped = df.groupby('group')
...: s1 = df_grouped.apply(lambda grp: grp['a'].sum() if grp['b'].sum() > 1 else grp['a'].max())
...:
24.8 ms ± 228 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
In [70]: %%timeit
...: df_grouped = df.groupby('group')
...: s2 = df_grouped['a'].sum().where(df_grouped['b'].sum() > 1, df_grouped['a'].max())
...:
1.63 ms ± 58 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
add a comment |
For better performance use where
:
np.random.seed(15)
N = 1000
df = pd.DataFrame(np.random.rand(N,10), columns=list('abcdefghij'))
df['group'] = np.random.randint(100, size=N)
df_grouped = df.groupby('group')
s1 = df_grouped.apply(lambda grp: grp['a'].sum() if grp['b'].sum() > 1 else grp['a'].max())
print (s1)
df_grouped = df.groupby('group')
s2 = df_grouped['a'].sum().where(df_grouped['b'].sum() > 1, df_grouped['a'].max())
print (s2)
In [69]: %%timeit
...: df_grouped = df.groupby('group')
...: s1 = df_grouped.apply(lambda grp: grp['a'].sum() if grp['b'].sum() > 1 else grp['a'].max())
...:
24.8 ms ± 228 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
In [70]: %%timeit
...: df_grouped = df.groupby('group')
...: s2 = df_grouped['a'].sum().where(df_grouped['b'].sum() > 1, df_grouped['a'].max())
...:
1.63 ms ± 58 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
For better performance use where
:
np.random.seed(15)
N = 1000
df = pd.DataFrame(np.random.rand(N,10), columns=list('abcdefghij'))
df['group'] = np.random.randint(100, size=N)
df_grouped = df.groupby('group')
s1 = df_grouped.apply(lambda grp: grp['a'].sum() if grp['b'].sum() > 1 else grp['a'].max())
print (s1)
df_grouped = df.groupby('group')
s2 = df_grouped['a'].sum().where(df_grouped['b'].sum() > 1, df_grouped['a'].max())
print (s2)
In [69]: %%timeit
...: df_grouped = df.groupby('group')
...: s1 = df_grouped.apply(lambda grp: grp['a'].sum() if grp['b'].sum() > 1 else grp['a'].max())
...:
24.8 ms ± 228 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
In [70]: %%timeit
...: df_grouped = df.groupby('group')
...: s2 = df_grouped['a'].sum().where(df_grouped['b'].sum() > 1, df_grouped['a'].max())
...:
1.63 ms ± 58 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
answered Nov 13 '18 at 7:32
jezraeljezrael
322k23265342
322k23265342
add a comment |
add a comment |
I figured it out with apply
:
df_grouped = df.groupby('group')
df_grouped.apply(lambda grp: grp['a'].sum() if grp['b'].sum() > 1 else grp['a'].max())
group
0 0.834666
1 1.096652
dtype: float64
add a comment |
I figured it out with apply
:
df_grouped = df.groupby('group')
df_grouped.apply(lambda grp: grp['a'].sum() if grp['b'].sum() > 1 else grp['a'].max())
group
0 0.834666
1 1.096652
dtype: float64
add a comment |
I figured it out with apply
:
df_grouped = df.groupby('group')
df_grouped.apply(lambda grp: grp['a'].sum() if grp['b'].sum() > 1 else grp['a'].max())
group
0 0.834666
1 1.096652
dtype: float64
I figured it out with apply
:
df_grouped = df.groupby('group')
df_grouped.apply(lambda grp: grp['a'].sum() if grp['b'].sum() > 1 else grp['a'].max())
group
0 0.834666
1 1.096652
dtype: float64
answered Nov 9 '18 at 23:56
jchaykowjchaykow
507318
507318
add a comment |
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53234634%2fpandas-groupby-if-condition-sum-else-max-for-given-column-based-on-another-co%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown