Orders of magnitude (energy)




This list compares various energies in joules (J), organized by order of magnitude.





Contents






  • 1 Below 1 J


  • 2 1 to 105 J


  • 3 106 to 1011 J


  • 4 1012 to 1017 J


  • 5 1018 to 1023 J


  • 6 Over 1024 J


  • 7 SI multiples


  • 8 See also


  • 9 Notes





Below 1 J






































































































































































































































































List of orders of magnitude for energy
Factor (joules)

SI prefix
Value
Item
10−34
  6.626×10−34 J
Photon energy of a photon with a frequency of 1 hertz.[1]
10−33
  2×10−33 J
Average kinetic energy of translational motion of a molecule at the lowest temperature reached, 100 picokelvins as of 1999[update][2]
10−28
 
6.6×10−28 J
Energy of a typical AM radio photon (1 MHz) (4×10−9eV)[3]
10−24

Yocto- (yJ)
1.6×10−24 J
Energy of a typical microwave oven photon (2.45 GHz) (1×10−5eV)[4][5]
10−23
  2×10−23 J
Average kinetic energy of translational motion of a molecule in the Boomerang Nebula, the coldest place known outside of a laboratory, at a temperature of 1 kelvin[6][7]
10−22
 
2–3000×10−22 J
Energy of infrared light photons[8]
10−21

Zepto- (zJ)
1.7×10−21 J
1 kJ/mol, converted to energy per molecule[9]
2.1×10−21 J

Thermal energy in each degree of freedom of a molecule at 25 °C (kT/2) (0.01 eV)[10]
2.856×10−21 J
By Landauer's principle, the minimum amount of energy required at 25 °C to change one bit of information
3–7×10−21 J
Energy of a van der Waals interaction between atoms (0.02–0.04 eV)[11][12]
4.1×10−21 J
The "kT" constant at 25 °C, a common rough approximation for the total thermal energy of each molecule in a system (0.03 eV)[13]
7–22×10−21 J
Energy of a hydrogen bond (0.04 to 0.13 eV)[11][14]
10−20
 
4.5×10−20 J
Upper bound of the mass-energy of a neutrino in particle physics (0.28 eV)[15][16]
10−19
 
1.6×10−19 J ≈1 electronvolt (eV)[17]
3–5×10−19 J Energy range of photons in visible light[18][19]
3–14×10−19 J
Energy of a covalent bond (2–9 eV)[11][20]
5–200×10−19 J
Energy of ultraviolet light photons[8]
10−18

Atto- (aJ)
   
10−17
 
2–2000×10−17 J
Energy range of X-ray photons[8]
10−16
     
10−15

Femto- (fJ)
3 × 10−15 J Average kinetic energy of one human red blood cell.[21][22][23]
10−14
 
1×10−14 J

Sound energy (vibration) transmitted to the eardrums by listening to a whisper for one second.[24][25][26]
> 2×10−14 J
Energy of gamma ray photons[8]
2.7×10−14 J Upper bound of the mass-energy of a muon neutrino[27][28]
8.2×10−14 J Rest mass-energy of an electron[29]
10−13
  1.6×10−13 J 1 megaelectronvolt (MeV)[30]
10−12

Pico- (pJ)
2.3×10−12 J Kinetic energy of neutrons produced by D-T fusion, used to trigger fission (14.1 MeV)[31][32]
10−11
 
3.4×10−11 J Average total energy released in the nuclear fission of one uranium-235 atom (215 MeV)[33][34]
10−10
 
1.5030×10−10 J Rest mass-energy of a proton[35]
1.505×10−10 J Rest mass-energy of a neutron[36]
1.6×10−10 J 1 gigaelectronvolt (GeV)[37]
3×10−10 J Rest mass-energy of a deuteron[38]
6×10−10 J Rest mass-energy of an alpha particle[39]
7×10−10 J Energy required to raise a grain of sand by 0.1mm (the thickness of a piece of paper).[40]
10−9

Nano- (nJ)
1.6×10−9 J 10 GeV[41]
8×10−9 J Initial operating energy per beam of the CERN Large Electron Positron Collider in 1989 (50 GeV)[42][43]
10−8
 
1.3×10−8 J
Mass-energy of a W boson (80.4 GeV)[44][45]
1.5×10−8 J
Mass-energy of a Z boson (91.2 GeV)[46][47]
1.6×10−8 J 100 GeV[48]
2×10−8 J
Mass-energy of the Higgs Boson (125.1 GeV)[49]
6.4×10−8 J Operating energy per proton of the CERN Super Proton Synchrotron accelerator in 1976[50][51]
10−7
 
1×10−7 J ≡ 1 erg[52]
1.6×10−7 J 1 TeV (teraelectronvolt),[53] about the kinetic energy of a flying mosquito[54]
10−6

Micro- (µJ)
1.04×10−6 J Energy per proton in the CERN Large Hadron Collider in 2015 (6.5 TeV)[55][56]
10−5
     
10−4
     
10−3

Milli- (mJ)
   
10−2

Centi- (cJ)
   
10−1

Deci- (dJ)
1.1×10−1 J Energy of an American half-dollar falling 1 metre[57][58]


1 to 105 J



































































































































































100
J
1 J ≡ 1 N·m (newton–metre)
1 J ≡ 1 W·s (watt-second)
1 J Kinetic energy produced as an extra small apple (~100 grams[59]) falls 1 meter against Earth's gravity[60]
1 J Energy required to heat 1 gram of dry, cool air by 1 degree Celsius[61]
1.4 J ≈ 1 ft·lbf (foot-pound force)[52]
4.184 J ≡ 1 thermochemical calorie (small calorie)[52]
4.1868 J ≡ 1 International (Steam) Table calorie[62]
8 J
Greisen-Zatsepin-Kuzmin theoretical upper limit for the energy of a cosmic ray coming from a distant source[63][64]
101

Deca- (daJ)
1×101 J Flash energy of a typical pocket camera electronic flash capacitor (100–400 µF @ 330 V)[65][66]
5×101 J The most energetic cosmic ray ever detected[67] was most likely a single proton traveling only slightly slower than the speed of light.[68]
102

Hecto- (hJ)
3×102 J Energy of a lethal dose of X-rays[69]
3×102 J Kinetic energy of an average person jumping as high as they can[70][71][72]
3.3×102 J
Energy to melt 1 g of ice[73]
> 3.6×102 J Kinetic energy of 800 g[74]standard men's javelin thrown at > 30 m/s[75] by elite javelin throwers[76]
5–20×102 J Energy output of a typical photography studio strobe light in a single flash[77]
6×102 J Kinetic energy of 2 kg[78]standard men's discus thrown at 24.4 m/s[citation needed] by the world record holder Jürgen Schult[79]
6×102 J Use of a 10-watt flashlight for 1 minute
7.5×102 J A power of 1 horsepower applied for 1 second[52]
7.8×102 J Kinetic energy of 7.26 kg[80]standard men's shot thrown at 14.7 m/s[citation needed] by the world record holder Randy Barnes[81]
8.01×102 J
Amount of work needed to lift a man with an average weight (81.7 kg) one meter above Earth (or any planet with Earth gravity)
103

Kilo- (kJ)
1.1×103 J ≈ 1 British thermal unit (BTU), depending on the temperature[52]
1.4×103 J Total solar radiation received from the Sun by 1 square meter at the altitude of Earth's orbit per second (solar constant)[82]
1.8×103 J Kinetic energy of M16 rifle bullet (5.56×45mm NATO M855, 4.1 g fired at 930 m/s)[83]
2.3×103 J
Energy to vaporize 1 g of water into steam[84]
3×103 J
Lorentz force can crusher pinch[85]
3.4×103 J Kinetic energy of world-record men's hammer throw (7.26 kg[86] thrown at 30.7 m/s[87] in 1986)[88]
3.6×103 J ≡ 1 W·h (watt-hour)[52]
4.2×103 J Energy released by explosion of 1 gram of TNT[52][89]
4.2×103 J ≈ 1 food Calorie (large calorie)
~7×103 J Muzzle energy of an elephant gun, e.g. firing a .458 Winchester Magnum[90]
9×103 J Energy in an alkaline AA battery[91]
104
 
1.7×104 J Energy released by the metabolism of 1 gram of carbohydrates[92] or protein[93]
3.8×104 J Energy released by the metabolism of 1 gram of fat[94]
4–5×104 J Energy released by the combustion of 1 gram of gasoline[95]
5×104 J Kinetic energy of 1 gram of matter moving at 10 km/s[96]
105
 
3×105 – 15×105 J
Kinetic energy of an automobile at highway speeds (1 to 5 tons[97] at 89 km/h or 55 mph)[98]
5×105 J
Kinetic energy of 1 gram of a meteor hitting Earth[99]


106 to 1011 J



















































































































































106

Mega- (MJ)
1×106 J
Kinetic energy of a 2 tonne[97] vehicle at 32 metres per second (115 km/h or 72 mph)[100]
1.2×106 J Approximate food energy of a snack such as a Snickers bar (280 food calories)[101]
3.6×106 J = 1 kWh (kilowatt-hour) (used for electricity)[52]
4.2×106 J Energy released by explosion of 1 kilogram of TNT[52][89]
8.4×106 J Recommended food energy intake per day for a moderately active woman (2000 food calories)[102][103]
107
 
1×107 J
Kinetic energy of the armor-piercing round fired by the assault guns of the ISU-152 tank[104][citation needed]
1.1×107 J Recommended food energy intake per day for a moderately active man (2600 food calories)[102][105]
3.7×107 J
$1 of electricity at a cost of $0.10/kWh (the US average retail cost in 2009)[106][107][108]
4×107 J
Energy from the combustion of 1 cubic meter of natural gas[109]
4.2×107 J
Caloric energy consumed by Olympian Michael Phelps on a daily basis during Olympic training[110]
6.3×107 J
Theoretical minimum energy required to accelerate 1 kg of matter to escape velocity from Earth's surface (ignoring atmosphere)[111]
108
 
1×108 J Kinetic energy of a 55 tonne aircraft at typical landing speed (59 m/s or 115 knots)[citation needed]
1.1×108 J ≈ 1 therm, depending on the temperature[52]
1.1×108 J ≈ 1 Tour de France, or ~90 hours[112] ridden at 5 W/kg[113] by a 65 kg rider[114]
7.3×108 J ≈ Energy from burning 16 kilograms of oil (using 135 kg per barrel of light crude)[citation needed]
109

Giga- (GJ)
1–10×109 J Energy in an average lightning bolt[115] (thunder)
1.1×109 J Magnetic stored energy in the world's largest toroidal superconducting magnet for the ATLAS experiment at CERN, Geneva[116]
1.2×109 J Inflight 100-ton Boeing 757-200 at 300 knots (154 m/s)
1.4×109 J Theoretical minimum amount of energy required to melt a tonne of steel (380 kWh)[117][118]
2×109 J Energy of an ordinary 61 liter gasoline tank of a car.[95][119][120]
2×109 J
Planck energy, the unit of energy in Planck units[121]
3×109 J Inflight 125-ton Boeing 767-200 flying at 373 knots (192 m/s)
3.3×109 J Approximate average amount of energy expended by a human heart muscle over an 80-year lifetime[122][123]
4.2×109 J Energy released by explosion of 1 ton of TNT.
4.5×109 J Average annual energy usage of a standard refrigerator[124][125]
6.1×109 J ≈ 1 bboe (barrel of oil equivalent)[126]
1010
 
2.3×1010 J Kinetic energy of an Airbus A380 at cruising speed (560 tonnes at 562 knots or 289 m/s)
4.2×1010 J ≈ 1 toe (ton of oil equivalent)[126]
4.6×1010 J Yield energy of a Massive Ordnance Air Blast bomb, the second most powerful non-nuclear weapon ever designed[127][128]
7.3×1010 J Energy consumed by the average U.S. automobile in the year 2000[129][130][131]
8.6×1010 J ≈ 1 MW·d (megawatt-day), used in the context of power plants[132]
8.8×1010 J Total energy released in the nuclear fission of one gram of uranium-235[33][34][133]
1011
  2.4×1011 J Approximate food energy consumed by an average human in an 80-year lifetime.[134]


1012 to 1017 J















































































































1012

Tera- (TJ)
3.4×1012 J
Maximum fuel energy of an Airbus A330-300 (97,530 liters[135] of Jet A-1[136])[137]
3.6×1012 J
1 GW·h (gigawatt-hour)[138]
4×1012 J
Electricity generated by one 20-kg CANDU fuel bundle assuming ~29%[139] thermal efficiency of reactor[140][141]
4.2×1012 J
Energy released by explosion of 1 kiloton of TNT[52][142]
6.4×1012 J Energy contained in jet fuel in a Boeing 747-100B aircraft at max fuel capacity (183,380 liters[143] of Jet A-1[136])[144]
1013
 
1.1×1013 J Energy of the maximum fuel an Airbus A380 can carry (320,000 liters[145] of Jet A-1[136])[146]
1.2×1013 J Orbital kinetic energy of the International Space Station (417 tonnes[147] at 7.7 km/s[148])[149]
6.3×1013 J Yield of the Little Boy atomic bomb dropped on Hiroshima in World War II (15 kilotons)[150][151]
9×1013 J Theoretical total mass-energy of 1 gram of matter[152]
1014
 
1.8×1014 J
Energy released by annihilation of 1 gram of antimatter and matter
3.75×1014 J Total energy released by the Chelyabinsk meteor.[153]
6×1014 J Energy released by an average hurricane in 1 second[154]
1015

Peta- (PJ)
> 1015 J Energy released by a severe thunderstorm[155]
1×1015 J Yearly electricity consumption in Greenland as of 2008[156][157]
4.2×1015 J Energy released by explosion of 1 megaton of TNT[52][158]
1016
 
1×1016 J Estimated impact energy released in forming Meteor Crater[citation needed]
1.1×1016 J Yearly electricity consumption in Mongolia as of 2010[156][159]
9×1016 J
Mass-energy in 1 kilogram of antimatter (or matter)[160]
1017
 
1×1017 J Energy released on the Earth's surface by the magnitude 9.1–9.3 2004 Indian Ocean earthquake[161]
1.7×1017 J Total energy from the Sun that strikes the face of the Earth each second[162]
2.1×1017 J Yield of the Tsar Bomba, the largest nuclear weapon ever tested (50 megatons)[163][164]
4.2×1017 J Yearly electricity consumption of Norway as of 2008[156][165]
4.5×1017 J Approximate energy needed to accelerate one ton to one-tenth of the speed of light
8×1017 J Estimated energy released by the eruption of the Indonesian volcano, Krakatoa, in 1883[166][167]


1018 to 1023 J





















































































1018

Exa- (EJ)
1.4×1018 J Yearly electricity consumption of South Korea as of 2009[156][168]
1019
 
1.4×1019 J Yearly electricity consumption in the U.S. as of 2009[156][169]
1.4×1019J Yearly electricity production in the U.S. as of 2009[170][171]
5×1019 J Energy released in 1 day by an average hurricane in producing rain (400 times greater than the wind energy)[154]
6.4×1019 J Yearly electricity consumption of the world as of 2008[update][172][173]
6.8×1019 J Yearly electricity generation of the world as of 2008[update][172][174]
1020
 
5×1020 J
Total world annual energy consumption in 2010[175][176]
8×1020 J Estimated global uranium resources for generating electricity 2005[177][178][179][180]
1021

Zetta- (ZJ)
6.9×1021 J Estimated energy contained in the world's natural gas reserves as of 2010[175][181]
7.9×1021 J Estimated energy contained in the world's petroleum reserves as of 2010[175][182]
1022
 
1.5×1022J Total energy from the Sun that strikes the face of the Earth each day[162][183]
2.4×1022 J Estimated energy contained in the world's coal reserves as of 2010[175][184]
2.9×1022 J Identified global uranium-238 resources using fast reactor technology[177]
3.9×1022 J Estimated energy contained in the world's fossil fuel reserves as of 2010[175][185]
4×1022 J Estimated total energy released by the magnitude 9.1–9.3 2004 Indian Ocean earthquake[186]
1023
 
2.2×1023 J Total global uranium-238 resources using fast reactor technology[177]
5×1023 J Approximate energy released in the formation of the Chicxulub Crater in the Yucatán Peninsula[187]


Over 1024 J

















































































































































































1024

Yotta- (YJ)
5.5×1024 J Total energy from the Sun that strikes the face of the Earth each year[162][188]
1025
  6×1025 J Energy released by a typical solar flare
1026
 
3.8×1026 J Total energy output of the Sun each second[189]
1027
  1×1027 J Estimate of the energy released by the impact that created the Caloris basin on Mercury[190]
1028
  3.8×1028 J Kinetic energy of the Moon in its orbit around the Earth (counting only its velocity relative to the Earth)[191][192]
1029
  2.1×1029 J
Rotational energy of the Earth[193][194][195]
1030
  1.8×1030 J
Gravitational binding energy of Mercury
1031
  3.3×1031 J Total energy output of the Sun each day[189][196]
1032
  2×1032 J
Gravitational binding energy of the Earth[197]
1033
  2.7×1033 J
Earth's kinetic energy in its orbit[198]
1034
  1.2×1034 J Total energy output of the Sun each year[189][199]
1039
  6.6×1039 J Theoretical total mass-energy of the Moon
1041
 
2.276×1041 J Gravitational binding energy of the Sun[200]
5.4×1041 J Theoretical total mass-energy of the Earth[201][202]
1043
 
5×1043 J
Total energy of all gamma rays in a typical gamma-ray burst[203][204]
1044
 
1–2×1044 J Estimated energy released in a supernova,[205] sometimes referred to as a foe
7044120000000000000♠1.2×1044 J Approximate lifetime energy output of the Sun.
1045
 
7045110000000000000♠(1.1±0.2)×1045 J Brightest observed hypernova ASASSN-15lh[206]
few times×1045 J Beaming-corrected 'True' total energy (Energy in gamma rays+relativistic kinetic energy) of hyper-energetic gamma-ray burst[207][208][209][210][211]
1046
  1×1046 J Estimated energy released in a hypernova[212]
1047
 
1.8×1047 J Theoretical total mass-energy of the Sun[213][214]
5.4×1047 J
Mass-energy emitted as gravitational waves during the merger of two black holes, originally about 30 Solar masses each, as observed by LIGO[215]
8.8×1047 J
GRB 080916C - the most powerful Gamma-Ray Burst (GRB) ever recorded - total 'apparent'/isotropic (not corrected for beaming) energy output estimated at 8.8 × 1047 joules (8.8 × 1054 erg), or 4.9 times the sun’s mass turned to energy.[216]
1053
  6×1053 J Total mechanical energy or enthalpy in the powerful AGN outburst in the RBS 797[217]
1054
  3×1054 J Total mechanical energy or enthalpy in the powerful AGN outburst in the Hercules A (3C 348)[218]
1055
  1055 J Total mechanical energy or enthalpy in the powerful AGN outburst in the MS 0735.6+7421
1058
  4×1058 J Visible mass-energy in our galaxy, the Milky Way[219][220]
1059
  1×1059 J Total mass-energy of our galaxy, the Milky Way, including dark matter and dark energy[221][222]
1062
  1–2×1062 J Total mass-energy of the Virgo Supercluster including dark matter, the Supercluster which contains the Milky Way[223]
1069
4×1069 J Estimated total mass-energy of the observable universe[224]


SI multiples



































































































SI multiples of joule (J)
Submultiples

Multiples
Value
SI symbol
Name
Value
SI symbol
Name
10−1 J
dJ
decijoule
101 J
daJ
decajoule
10−2 J
cJ
centijoule
102 J
hJ
hectojoule
10−3 J
mJ
millijoule
103 J
kJ
kilojoule
10−6 J
µJ
microjoule
106 J
MJ
megajoule
10−9 J
nJ
nanojoule
109 J
GJ
gigajoule
10−12 J
pJ
picojoule
1012 J
TJ
terajoule
10−15 J
fJ
femtojoule
1015 J
PJ
petajoule
10−18 J
aJ
attojoule
1018 J
EJ
exajoule
10−21 J
zJ
zeptojoule
1021 J
ZJ
zettajoule
10−24 J
yJ
yoctojoule
1024 J
YJ
yottajoule

This SI unit is named after James Prescott Joule. As with every International System of Units (SI) unit named for a person, the first letter of its symbol is upper case (J). However, when an SI unit is spelled out in English, it is treated as a common noun and should always begin with a lower case letter (joule)—except in a situation where any word in that position would be capitalized, such as at the beginning of a sentence or in material using title case.



See also




  • Conversion of units of energy

  • Energies per unit mass

  • Energy conversion efficiency

  • List of energy topics

  • Metric system

  • Scientific notation

  • TNT equivalent



Notes





  1. ^ "Planck's constant | physics | Britannica.com". britannica.com. Retrieved 26 December 2016..mw-parser-output cite.citation{font-style:inherit}.mw-parser-output .citation q{quotes:"""""""'""'"}.mw-parser-output .citation .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-maint{display:none;color:#33aa33;margin-left:0.3em}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}


  2. ^ Calculated: KEavg ≈ (3/2) × T × 1.38×1023 = (3/2) × 1×1010 × 1.38×1023 ≈ 2.07×1033 J


  3. ^ Calculated: Ephoton = hν = 6.626×1034 J-s × 1×106 Hz = 6.6×1028 J. In eV: 6.6×1028 J / 1.6×1019 J/eV = 4.1×109 eV.


  4. ^ "Frequency of a Microwave Oven". The Physics Factbook. Retrieved 15 November 2011.


  5. ^ Calculated: Ephoton = hν = 6.626×1034 J-s × 2.45×108 Hz = 1.62×1024 J. In eV: 1.62×1024 J / 1.6×1019 J/eV = 1.0×105 eV.


  6. ^ "Boomerang Nebula boasts the coolest spot in the Universe". JPL. Retrieved 13 November 2011.


  7. ^ Calculated: KEavg ≈ (3/2) × T × 1.38×1023 = (3/2) × 1 × 1.38×1023 ≈ 2.07×1023 J


  8. ^ abcd "Wavelength, Frequency, and Energy". Imagine the Universe. NASA. Retrieved 15 November 2011.


  9. ^ Calculated: 1×103 J / 6.022×1023 entities per mole = 1.7×1021 J per entity


  10. ^ Calculated: 1.381×1023 J/K × 298.15 K / 2 = 2.1×1021 J


  11. ^ abc "Bond Lengths and Energies". Chem 125 notes. UCLA. Archived from the original on 23 August 2011. Retrieved 13 November 2011.


  12. ^ Calculated: 2 to 4 kJ/mol = 2×103 J / 6.022×1023 molecules/mol = 3.3×1021 J. In eV: 3.3×1021 J / 1.6×1019 J/eV = 0.02 eV. 4×103 J / 6.022×1023 molecules/mol = 6.7×1021 J. In eV: 6.7×1021 J / 1.6×1019 J/eV = 0.04 eV.


  13. ^ Ansari, Anjum. "Basic Physical Scales Relevant to Cells and Molecules". Physics 450. Retrieved 13 November 2011.


  14. ^ Calculated: 4 to 13 kJ/mol. 4 kJ/mol = 4×103 J / 6.022×1023 molecules/mol = 6.7×1021 J. In eV: 6.7×1021 J / 1.6×1019 eV/J = 0.042 eV. 13 kJ/mol = 13×103 J / 6.022×1023 molecules/mol = 2.2×1020 J. In eV: 13×103 J / 6.022×1023 molecules/mol / 1.6×1019 eV/J = 0.13 eV.


  15. ^ Thomas, S.; Abdalla, F.; Lahav, O. (2010). "Upper Bound of 0.28 eV on Neutrino Masses from the Largest Photometric Redshift Survey". Physical Review Letters. 105 (3): 031301. arXiv:0911.5291. Bibcode:2010PhRvL.105c1301T. doi:10.1103/PhysRevLett.105.031301. PMID 20867754.


  16. ^ Calculated: 0.28 eV × 1.6×1019 J/eV = 4.5×1020 J


  17. ^ "CODATA Value: electron volt". NIST. Retrieved 4 November 2011.


  18. ^ "BASIC LAB KNOWLEDGE AND SKILLS". Retrieved 5 November 2011. Visible wavelengths are roughly from 390 nm to 780 nm


  19. ^ Calculated: E = hc/λ. E780 nm = 6.6×1034 kg-m2/s × 3×108 m/s / (780×109 m) = 2.5×1019 J. E_390 _nm = 6.6×1034 kg-m2/s × 3×108 m/s / (390×109 m) = 5.1×1019 J


  20. ^ Calculated: 50 kcal/mol × 4.184 J/calorie / 6.0×1022e23 molecules/mol = 3.47×1019 J. (3.47×1019 J / 1.60×1019 eV/J = 2.2 eV.) and 200 kcal/mol × 4.184 J/calorie / 6.0×1022e23 molecules/mol = 1.389×1018 J. (7.64×1019 J / 1.60×1019 eV/J = 8.68 eV.)


  21. ^ Phillips, Kevin; Jacques, Steven; McCarty, Owen (2012). "How much does a cell weigh?". Physical Review Letters. 109 (11): 118105. Bibcode:2012PhRvL.109k8105P. doi:10.1103/PhysRevLett.109.118105. PMC 3621783. PMID 23005682. Roughly 27 picograms


  22. ^ Bob Berman. "Our Bodies' Velocities, By the Numbers". Retrieved 19 August 2016. The [...] blood [...] flow[s] at an average speed of 3 to 4 mph


  23. ^ Calculated: 1/2 × 27×1012 g × (3.5 miles per hour)2 = 3×1015 J


  24. ^ "Physics of the Body" (PDF). Notre Dame. Retrieved 19 August 2016.. "The eardrum is a [...] membran[e] with an area of 65 mm2."


  25. ^ "Intensity and the Decibel Scale". Physics Classroom. Retrieved 19 August 2016.


  26. ^ Calculated: two eardrums ≈ 1 cm2. 1×106 W/m2 × 1×104 m2 × 1 s = 1×1014 J


  27. ^ Thomas J Bowles (2000). P. Langacker, ed. Neutrinos in physics and astrophysics: from 10–33 to 1028 cm: TASI 98 : Boulder, Colorado, USA, 1–26 June 1998. World Scientific. p. 354. ISBN 978-981-02-3887-2. Retrieved 11 November 2011. an upper limit ov m_v_u < 170 keV


  28. ^ Calculated: 170×103 eV × 1.6×1019 J/eV = 2.7×1014 J


  29. ^ "electron mass energy equivalent". NIST. Retrieved 4 November 2011.


  30. ^ "Conversion from eV to J". NIST. Retrieved 4 November 2011.


  31. ^ Muller, Richard A. (2002). "The Sun, Hydrogen Bombs, and the physics of fusion". Archived from the original on 2 April 2012. Retrieved 5 November 2011. The neutron comes out with high energy of 14.1 MeV


  32. ^ "Conversion from eV to J". NIST. Retrieved 4 November 2011.


  33. ^ ab "Energy From Uranium Fission". HyperPhysics. Retrieved 8 November 2011.


  34. ^ ab "Conversion from eV to J". NIST. Retrieved 4 November 2011.


  35. ^ "proton mass energy equivalent". NIST. Retrieved 4 November 2011.


  36. ^ "neutron mass energy equivalent". NIST. Retrieved 4 November 2011.


  37. ^ "Conversion from eV to J". NIST. Retrieved 4 November 2011.


  38. ^ "deuteron mass energy equivalent". NIST. Retrieved 4 November 2011.


  39. ^ "alpha particle mass energy equivalent". NIST. Retrieved 4 November 2011.


  40. ^ Calculated: 7×104 g × 9.8 m/s2 × 1×104 m


  41. ^ "Conversion from eV to J". NIST. Retrieved 4 November 2011.


  42. ^ Myers, Stephen. "The LEP Collider". CERN. Retrieved 14 November 2011. the LEP machine energy is about 50 GeV per beam


  43. ^ Calculated: 50×109 eV × 1.6×1019 J/eV = 8×109 J


  44. ^ "W". PDG Live. Particle Data Group. Retrieved 4 November 2011.
    [permanent dead link]



  45. ^ "Conversion from eV to J". NIST. Retrieved 4 November 2011.


  46. ^ Amsler, C.; Doser, M.; Antonelli, M.; Asner, D.; Babu, K.; Baer, H.; Band, H.; Barnett, R.; Bergren, E.; Beringer, J.; Bernardi, G.; Bertl, W.; Bichsel, H.; Biebel, O.; Bloch, P.; Blucher, E.; Blusk, S.; Cahn, R. N.; Carena, M.; Caso, C.; Ceccucci, A.; Chakraborty, D.; Chen, M. -C.; Chivukula, R. S.; Cowan, G.; Dahl, O.; d'Ambrosio, G.; Damour, T.; De Gouvêa, A.; et al. (2008). "Review of Particle Physics⁎". Physics Letters B. 667 (1): 1–6. Bibcode:2008PhLB..667....1A. doi:10.1016/j.physletb.2008.07.018.
    [permanent dead link]



  47. ^ "Conversion from eV to J". NIST. Retrieved 4 November 2011.


  48. ^ "Conversion from eV to J". NIST. Retrieved 4 November 2011.


  49. ^ ATLAS; CMS (26 March 2015). "Combined Measurement of the Higgs Boson Mass in pp Collisions at √s=7 and 8 TeV with the ATLAS and CMS Experiments". Physical Review Letters. 114 (19): 191803. arXiv:1503.07589. Bibcode:2015PhRvL.114s1803A. doi:10.1103/PhysRevLett.114.191803.


  50. ^ Adams, John. "400 GeV Proton Synchrotron". Excertp from the CERN Annual Report 1976. CERN. Retrieved 14 November 2011. A circulating proton beam of 400 GeV energy was first achieved in the SPS on 17 June 1976


  51. ^ Calculated: 400×109 eV × 1.6×1019 J/eV = 6.4×108 J


  52. ^ abcdefghijkl "Appendix B8—Factors for Units Listed Alphabetically". NIST Guide for the Use of the International System of Units (SI). NIST. Retrieved 4 November 2011. 1.355818


  53. ^ "Conversion from eV to J". NIST. Retrieved 4 November 2011.


  54. ^ "Chocolate bar yardstick". Archived from the original on 26 February 2014. Retrieved 24 January 2014. A TeV is actually a very tiny amount of energy. A popular analogy is to a flying mosquito.


  55. ^ "First successful beam at record energy of 6.5 TeV". Retrieved 28 April 2015.


  56. ^ Calculated: 6.5×1012 eV per beam × 1.6×1019 J/eV = 1.04×106 J


  57. ^ "Coin specifications". United States Mint. Retrieved 2 November 2011. 11.340 g


  58. ^ Calculated: m×g×h = 11.34×103 kg × 9.8 m/s2 × 1 m = 1.1×101 J


  59. ^ "Apples, raw, with skin (NDB No. 09003)". USDA Nutrient Database. USDA. Archived from the original on 3 March 2015. Retrieved 8 December 2011.


  60. ^ Calculated: m×g×h = 1×101 kg × 9.8 m/s2 × 1 m = 1 J


  61. ^ "Specific Heat of Dry Air". Engineering Toolbox. Retrieved 2 November 2011.


  62. ^ "Footnotes". NIST Guide to the SI. NIST. Retrieved 4 November 2011.


  63. ^ "Physical Motivations". ULTRA Home Page (EUSO project). Dipartimento di Fisica di Torino. Retrieved 12 November 2011.


  64. ^ Calculated: 5×1019 eV × 1.6×1019 J/ev = 8 J


  65. ^ "Notes on the Troubleshooting and Repair of Electronic Flash Units and Strobe Lights and Design Guidelines, Useful Circuits, and Schematics". Retrieved 8 December 2011. The energy storage capacitor for pocket cameras is typically 100 to 400 uF at 330 V (charged to 300 V) with a typical flash energy of 10 W-s.


  66. ^ "Teardown: Digital Camera Canon PowerShot |". electroelvis.com. 2 September 2012. Archived from the original on 1 August 2013. Retrieved 6 June 2013.


  67. ^ "The Fly's Eye (1981–1993)". HiRes. Retrieved 14 November 2011.


  68. ^
    Bird, D. J. (March 1995). "Detection of a cosmic ray with measured energy well beyond the expected spectral cutoff due to cosmic microwave radiation". Astrophysical Journal, Part 1. 441 (1): 144–150. arXiv:astro-ph/9410067. Bibcode:1995ApJ...441..144B. doi:10.1086/175344.



  69. ^ "Ionizing Radiation". General Chemistry Topic Review: Nuclear Chemistry. Bodner Research Web. Retrieved 5 November 2011.


  70. ^ "Vertical Jump Test". Topend Sports. Retrieved 12 December 2011. 41–50 cm (males) 31–40 cm (females)


  71. ^ "Mass of an Adult". The Physics Factbook. Retrieved 13 December 2011. 70 kg


  72. ^ Kinetic energy at start of jump = potential energy at high point of jump. Using a mass of 70 kg and a high point of 40 cm => energy = m×g×h = 70 kg × 9.8 m/s2 × 40×102 m = 274 J


  73. ^ "Latent Heat of Melting of some common Materials". Engineering Toolbox. Retrieved 10 June 2013. 334 kJ/kg


  74. ^ "Javelin Throw – Introduction". IAAF. Retrieved 12 December 2011.


  75. ^ Young, Michael. "Developing Event Specific Strength for the Javelin Throw" (PDF). Retrieved 13 December 2011. For elite athletes, the velocity of a javelin release has been measured in excess of 30m/s
    [permanent dead link]



  76. ^ Calculated: 1/2 × 0.8 kg × (30 m/s)2 = 360 J


  77. ^ Greenspun, Philip. "Studio Photography". Archived from the original on 29 September 2007. Retrieved 13 December 2011. Most serious studio photographers start with about 2000 watts-seconds


  78. ^ "Discus Throw – Introduction". IAAF. Retrieved 12 December 2011.


  79. ^ Calculated: 1/2 × 2 kg × (24.4 m/s)2 = 595.4 J


  80. ^ "Shot Put – Introduction". IAAF. Retrieved 12 December 2011.


  81. ^ Calculated: 1/2 × 7.26 kg × (14.7 m/s)2 = 784 J


  82. ^ Kopp, G.; Lean, J. L. (2011). "A new, lower value of total solar irradiance: Evidence and climate significance". Geophysical Research Letters. 38 (1): n/a. Bibcode:2011GeoRL..38.1706K. doi:10.1029/2010GL045777.


  83. ^ "Intermediate power ammunition for automatic assault rifles". Modern Firearms. World Guns. Archived from the original on 10 August 2013. Retrieved 12 December 2011.


  84. ^ "Fluids - Latent Heat of Evaporation". Engineering Toolbox. Retrieved 10 June 2013. 2257 kJ/kg


  85. ^ powerlabs.org – The PowerLabs Solid State Can Crusher!, 2002


  86. ^ "Hammer Throw – Introduction". IAAF. Retrieved 12 December 2011.


  87. ^ Otto, Ralf M. "HAMMER THROW WR PHOTOSEQUENCE – YURIY SEDYKH" (PDF). Retrieved 4 November 2011. The total release velocity is 30.7 m/sec


  88. ^ Calculated: 1/2 × 7.26 kg × (30.7 m/s)2 = 3420 J


  89. ^ ab 4.2×109 J/ton of TNT-equivalent × (1 ton/1×106 grams) = 4.2×103 J/gram of TNT-equivalent


  90. ^ ".458 Winchester Magnum" (PDF). Accurate Powder. Western Powders Inc. Archived from the original (PDF) on 28 September 2007. Retrieved 7 September 2010.


  91. ^ "Battery energy storage in various battery sizes". AllAboutBatteries.com. Archived from the original on 4 December 2011. Retrieved 15 December 2011.


  92. ^ "Energy Density of Carbohydrates". The Physics Factbook. Retrieved 5 November 2011.


  93. ^ "Energy Density of Protein". The Physics Factbook. Retrieved 5 November 2011.


  94. ^ "Energy Density of Fats". The Physics Factbook. Retrieved 5 November 2011.


  95. ^ ab "Energy Density of Gasoline". The Physics Factbook. Retrieved 5 November 2011.


  96. ^ Calculated: E = 1/2 m×v2 = 1/2 × (1×103 kg) × (1×104 m/s)2 = 5×104 J.


  97. ^ ab "List of Car Weights". LoveToKnow. Retrieved 13 December 2011. 3000 to 12000 pounds


  98. ^ Calculated: Using car weights of 1 ton to 5 tons. E = 1/2 m×v2 = 1/2 × (1×103 kg) × (55 mph × 1600 m/mi / 3600 s/hr) = 3.0×105 J. E = 1/2 × (5×103 kg) × (55 mph × 1600 m/mi / 3600 s/hr) = 15×105 J.


  99. ^ Muller, Richard A. "Kinetic Energy in a meteor". Old Physics 10 notes. Archived from the original on 2 April 2012. Retrieved 13 November 2011.


  100. ^ Calculated: KE = 1/2 × 2×103 kg × (32 m/s)2 = 1.0×106 J


  101. ^ "Candies, MARS SNACKFOOD US, SNICKERS Bar (NDB No. 19155)". USDA Nutrient Database. USDA. Archived from the original on 3 March 2015. Retrieved 14 November 2011.


  102. ^ ab "How to Balance the Food You Eat and Your Physical Activity and Prevent Obesity". Healthy Weight Basics. National Heart Lung and Blood Institutde. Retrieved 14 November 2011.


  103. ^ Calculated: 2000 food calories = 2.0×106 cal × 4.184 J/cal = 8.4×106 J


  104. ^ Calculated: 1/2 × m × v2 = 1/2 × 48.78 kg × (655 m/s)2 = 1.0×107 J.


  105. ^ Calculated: 2600 food calories = 2.6×106 cal × 4.184 J/cal = 1.1×107 J


  106. ^ "Table 3.3 Consumer Price Estimates for Energy by Source, 1970–2009". Annual Energy Review. US Energy Information Administration. 19 October 2011. Retrieved 17 December 2011. $28.90 per million BTU


  107. ^ Calculated J per dollar: 1 million BTU/$28.90 = 1×106 BTU / 28.90 dollars × 1.055×103 J/BTU = 3.65×107 J/dollar


  108. ^ Calculated cost per kWh: 1 kWh × 3.60×106 J/kWh / 3.65×107 J/dollar = 0.0986 dollar/kWh


  109. ^ "Energy in a Cubic Meter of Natural Gas". The Physics Factbook. Retrieved 15 December 2011.


  110. ^ "The Olympic Diet of Michael Phelps". WebMD. Retrieved 28 December 2011.


  111. ^ Cline, James E. D. "Energy to Space". Retrieved 13 November 2011. 6.27×107 Joules / Kg


  112. ^ "Tour de France Winners, Podium, Times". Bike Race Info. Retrieved 10 December 2011.


  113. ^ "Watts/kg". Flamme Rouge. Archived from the original on 2 January 2012. Retrieved 4 November 2011.


  114. ^ Calculated: 90 hr × 3600 seconds/hr × 5 W/kg × 65 kg = 1.1×108 J


  115. ^ Smith, Chris. "How do Thunderstorms Work?". The Naked Scientists. Retrieved 15 November 2011. It discharges about 1–10 billion joules of energy


  116. ^ "Powering up ATLAS's mega magnet". Spotlight on... CERN. Archived from the original on 30 November 2011. Retrieved 10 December 2011. magnetic energy of 1.1 Gigajoules


  117. ^ "ITP Metal Casting: Melting Efficiency Improvement" (PDF). ITP Metal Casting. U.S. Department of Energy. Retrieved 14 November 2011. 377 kWh/mt


  118. ^ Calculated: 380 kW-h × 3.6×106 J/kW-h = 1.37×109 J


  119. ^ Bell Fuels. "Lead-Free Gasoline Material Safety Data Sheet". NOAA. Archived from the original on 20 August 2002. Retrieved 6 July 2008.


  120. ^ thepartsbin.com – Volvo Fuel Tank: Compare at The Parts Bin, 6 May 2012


  121. ^ Ep=ℏc5G{displaystyle E_{p}={sqrt {frac {hbar c^{5}}{G}}}}E_{p}={sqrt {frac {hbar c^{5}}{G}}}


  122. ^ "Power of a Human Heart". The Physics Factbook. Retrieved 10 December 2011. The mechanical power of the human heart is ~1.3 watts


  123. ^ Calculated: 1.3 J/s × 80 years × 3.16×107 s/year = 3.3×109 J


  124. ^ "U.S. Household Electricity Uses: A/C, Heating, Appliances". U.S. HOUSEHOLD ELECTRICITY REPORT. EIA. Retrieved 13 December 2011. For refrigerators in 2001, the average UEC was 1,239 kWh


  125. ^ Calculated: 1239 kWh × 3.6×106 J/kWh = 4.5×109 J


  126. ^ ab Energy Units, by Arthur Smith, 21 January 2005


  127. ^ "Top 10 Biggest Explosions". Listverse. 2011-11-28. Retrieved 10 December 2011. a yield of 11 tons of TNT


  128. ^ Calculated: 11 tons of TNT-equivalent × 4.184×109 J/ton of TNT-equivalent = 4.6×1010 J


  129. ^ "Emission Facts: Average Annual Emissions and Fuel Consumption for Passenger Cars and Light Trucks". EPA. Retrieved 12 December 2011. 581 gallons of gasoline


  130. ^ "200 Mile-Per-Gallon Cars?". Archived from the original on 19 December 2011. Retrieved 12 December 2011. a gallon of gas ... 125 million joules of energy


  131. ^ Calculated: 581 gallons × 125×106 J/gal = 7.26×1010 J


  132. ^ Calculated: 1×106 watts × 86400 seconds/day = 8.6×1010 J


  133. ^ Calculated: 3.44×1010 J/U-235-fission × 1×103 kg / (235 amu per U-235-fission × 1.66×1027 amu/kg) = 8.82×1010 J


  134. ^ Calculated: 2000 kcal/day × 365 days/year × 80 years = 2.4×1011 J


  135. ^ "A330-300 Dimensions & key data". Airbus. Retrieved 12 December 2011. 97530 litres


  136. ^ abc "Archived copy" (PDF). Archived from the original (PDF) on 8 June 2011. Retrieved 2011-08-19.CS1 maint: Archived copy as title (link)


  137. ^ Calculated: 97530 liters × 0.804 kg/L × 43.15 MJ/kg = 3.38×1012 J


  138. ^ Calculated: 1×109 watts × 3600 seconds/hour


  139. ^ Weston, Kenneth. "Chapter 10. Nuclear Power Plants" (PDF). Energy Conversion. Retrieved 13 December 2011. The thermal efficiency of a CANDU plant is only about 29%


  140. ^ "CANDU and Heavy Water Moderated Reactors". Retrieved 12 December 2011. fuel burnup in a CANDU is only 6500 to 7500 MWd per metric ton uranium


  141. ^ Calculated: 7500×106 watt-days/tonne × (0.020 tonnes per bundle) × 86400 seconds/day = 1.3×1013 J of burnup energy. Electricity = burnup × ~29% efficiency = 3.8×1012 J


  142. ^ Calculated: 4.2×109 J/ton of TNT-equivalent × 1×103 tons/megaton = 4.2×1012 J/megaton of TNT-equivalent


  143. ^ "747 Classics Technical Specs". Boeing. Archived from the original on 10 December 2007. Retrieved 12 December 2011. 183,380 L


  144. ^ Calculated: 183380 liters × 0.804 kg/L × 43.15 MJ/kg = 6.36×1012 J


  145. ^ "A380-800 Dimensions & key data". Airbus. Retrieved 12 December 2011. 320,000 L


  146. ^ Calculated: 320,000 l × 0.804 kg/L × 43.15  MJ/kg = 11.1×1012 J


  147. ^ "International Space Station: The ISS to Date". NASA. Retrieved 23 August 2011.


  148. ^ "The wizards of orbits". European Space Agency. Retrieved 10 December 2011. The International Space Station, for example, flies at 7.7 km/s in one of the lowest practicable orbits


  149. ^ Calculated: E = 1/2 m.v2 = 1/2 × 417000 kg × (7700m/s)2 = 1.2×1013 J


  150. ^ "What was the yield of the Hiroshima bomb?". Warbird's Forum. Retrieved 4 November 2011. 21 kt


  151. ^ Calculated: 15 kt = 15×109 grams of TNT-equivalent × 4.2×103 J/gram TNT-equivalent = 6.3×1013 J


  152. ^ "Conversion from kg to J". NIST. Retrieved 4 November 2011.


  153. ^ "JPL - Fireballs and bolides". Jet Propulsion Laboratory. NASA. Retrieved 13 April 2017.


  154. ^ ab "How much energy does a hurricane release?". FAQ : HURRICANES, TYPHOONS, AND TROPICAL CYCLONES. NOAA. Retrieved 12 November 2011.


  155. ^ "The Gathering Storms". COSMOS. Archived from the original on 4 April 2012. Retrieved 10 December 2011.


  156. ^ abcde "Country Comparison :: Electricity – consumption". The World Factbook. CIA. Archived from the original on 28 January 2012. Retrieved 11 December 2011.


  157. ^ Calculated: 288.6×106 kWh × 3.60×106 J/kWh = 1.04×1015 J


  158. ^ Calculated: 4.2×109 J/ton of TNT-equivalent × 1×106 tons/megaton = 4.2×1015 J/megaton of TNT-equivalent


  159. ^ Calculated: 3.02×109 kWh × 3.60×106 J/kWh = 1.09×1016 J


  160. ^ Calculated: E = mc2 = 1 kg × (2.998×108 m/s)2 = 8.99×1016 J


  161. ^ "USGS Energy and Broadband Solution". National Earthquake Information Center, US Geological Survey. Archived from the original on 4 April 2010. Retrieved 9 December 2011.


  162. ^ abc The Earth has a cross section of 1.274×1014square meters and the solar constant is 1361 watts per square meter.


  163. ^ "The Soviet Weapons Program – The Tsar Bomba". The Nuclear Weapon Archive. Retrieved 4 November 2011.


  164. ^ Calculated: 50×106 tons TNT-equivalent × 4.2×109 J/ton TNT-equivalent = 2.1×1017 J


  165. ^ Calculated: 115.6×109 kWh × 3.60×106 J/kWh = 4.16×1017 J


  166. ^ Alexander, R. McNeill (1989). Dynamics of Dinosaurs and Other Extinct Giants. Columbia University Press. p. 144. ISBN 978-0-231-06667-9. the explosion of the island volcano Krakatoa in 1883, had about 200 megatonnes energy.


  167. ^ Calculated: 200×106 tons of TNT equivalent × 4.2×109 J/ton of TNT equivalent = 8.4×1017 J


  168. ^ Calculated: 402×109 kWh × 3.60×106 J/kWh = 1.45×1017 J


  169. ^ Calculated: 3.741×1012 kWh × 3.600×106 J/kWh = 1.347×1019 J


  170. ^ "United States". The World Factbook. USA. Retrieved 11 December 2011.


  171. ^ Calculated: 3.953×1012 kWh × 3.600×106 J/kWh = 1.423×1019 J


  172. ^ ab "World". The World Factbook. CIA. Retrieved 11 December 2011.


  173. ^ Calculated: 17.8×1012 kWh × 3.60×106 J/kWh = 6.41×1019 J


  174. ^ Calculated: 18.95×1012 kWh × 3.60×106 J/kWh = 6.82×1019 J


  175. ^ abcde "Statistical Review of World Energy 2011" (PDF). BP. Archived from the original (PDF) on 2 September 2011. Retrieved 9 December 2011.


  176. ^ Calculated: 12002.4×106 tonnes of oil equivalent × 42×109 J/tonne of oil equivalent = 5.0×1020 J


  177. ^ abc "Global Uranium Resources to Meet Projected Demand | International Atomic Energy Agency". iaea.org. June 2006. Retrieved 26 December 2016.


  178. ^ "U.S. Energy Information Administration, International Energy Generation".


  179. ^ "U.S. EIA International Energy Outlook 2007". eia.doe.gov. Retrieved 26 December 2016.


  180. ^ Final number is computed. Energy Outlook 2007 shows 15.9% of world energy is nuclear. IAEA estimates conventional uranium stock, at today's prices is sufficient for 85 years. Convert billion kilowatt-hours to joules then: 6.25×1019×0.159×85 = 8.01×1020.


  181. ^ Calculated: "6608.9 trillion cubic feet" => 6608.9×103 billion cubic feet × 0.025 million tonnes of oil equivalent/billion cubic feet × 1×106 tonnes of oil equivalent/million tonnes of oil equivalent × 42×109 J/tonne of oil equivalent = 6.9×1021 J


  182. ^ Calculated: "188.8 thousand million tonnes" => 188.8×109 tonnes of oil × 42×109 J/tonne of oil = 7.9×1021 J


  183. ^ Calculated: 1.27×1014 m2 × 1370 W/m2 × 86400 s/day = 1.5×1022 J


  184. ^ Calculated: 860938 million tonnes of coal => 860938×106 tonnes of coal × (1/1.5 tonne of oil equivalent / tonne of coal) × 42×109 J/tonne of oil equivalent = 2.4×1022 J


  185. ^ Calculated: natural gas + petroleum + coal = 6.9×1021 J + 7.9×1021 J + 2.4×1022 J = 3.9×1022 J


  186. ^ "USGS, Harvard Moment Tensor Solution". National Earthquake Information Center. 26 December 2004. Archived from the original on 17 January 2010. Retrieved 9 December 2011.


  187. ^ Bralower, Timothy J.; Charles K. Paull; R. Mark Leckie (April 1998). "The Cretaceous–Tertiary boundary cocktail: Chicxulub impact triggers margin collapse and extensive sediment gravity flows" (PDF). Geology. 26 (4): 331–334. Bibcode:1998Geo....26..331B. doi:10.1130/0091-7613(1998)026<0331:tctbcc>2.3.co;2. Archived from the original (PDF) on 28 November 2007. Retrieved 6 June 2013. The kinetic energy derived by the impact is estimated at ~5 × 1030 ergs


  188. ^ Calculated: 1.27×1014 m2 × 1370 W/m2 × 86400 s/day = 5.5×1024 J


  189. ^ abc "Ask Us: Sun: Amount of Energy the Earth Gets from the Sun". Cosmicopia. NASA. Retrieved 4 November 2011.


  190. ^ Lii, Jiangning. "Seismic effects of the Caloris basin impact, Mercury" (PDF). MIT.


  191. ^ "Moon Fact Sheet". NASA. Retrieved 16 December 2011.


  192. ^ Calculated: KE = 1/2 × m × v2. v = 1.023×103 m/s. m = 7.349×1022 kg. KE = 1/2 × (7.349×1022 kg) × (1.023×103 m/s)2 = 3.845×1028 J.


  193. ^ "Moment of Inertia—Earth". Eric Weisstein's World of Physics. Retrieved 5 November 2011.


  194. ^ Allain, Rhett. "Rotational energy of the Earth as an energy source". .dotphysics. Science Blogs. Archived from the original on 17 November 2011. Retrieved 5 November 2011. the Earth takes 23.9345 hours to rotate


  195. ^ Calculated: E_rotational = 1/2 × I × w2 = 1/2 × (8.0×1037 kg m2) × (2×pi/(23.9345 hour period × 3600 seconds/hour))2 = 2.1×1029 J


  196. ^ Calculated: 3.8×1026 J/s × 86400 s/day = 3.3×1031 J


  197. ^ "Earth's Gravitational Binding Energy". Retrieved 19 March 2012. Variable Density Method: the Earth's gravitational binding energy is −1.711×1032 J


  198. ^ "DutchS/pseudosc/flipaxis". uwgb.edu. Archived from the original on 22 August 2017. Retrieved 26 December 2016.


  199. ^ Calculated: 3.8×1026 J/s × 86400 s/day × 365.25 days/year = 1.2×1034 J


  200. ^ U=(3/5)GM2r{displaystyle U={frac {(3/5)GM^{2}}{r}}}U={frac {(3/5)GM^{2}}{r}}
    Chandrasekhar, S. 1939, An Introduction to the Study of Stellar Structure (Chicago: U. of Chicago; reprinted in New York: Dover), section 9, eqs. 90–92, p. 51 (Dover edition)
    Lang, K. R. 1980, Astrophysical Formulae (Berlin: Springer Verlag), p. 272



  201. ^ "Earth: Facts & Figures". Solar System Exploration. NASA. Retrieved 29 September 2011.


  202. ^ "Conversion from kg to J". NIST. Retrieved 4 November 2011.


  203. ^ Frail, D. A.; Kulkarni, S. R.; Sari, R.; Djorgovski, S. G.; Bloom, J. S.; Galama, T. J.; Reichart, D. E.; Berger, E.; Harrison, F. A.; Price, P. A.; Yost, S. A.; Diercks, A.; Goodrich, R. W.; Chaffee, F. (2001). "Beaming in Gamma-Ray Bursts: Evidence for a Standard Energy Reservoir". The Astrophysical Journal. 562 (1): L55. arXiv:astro-ph/0102282. Bibcode:2001ApJ...562L..55F. doi:10.1086/338119. "the gamma-ray energy release, corrected for geometry, is narrowly clustered around 5 × 1050 erg"


  204. ^ Calculated: 5×1050 erg × 1×107 J/erg = 5×1043 J


  205. ^ Khokhlov, A.; Mueller, E.; Hoeflich, P.; Mueller; Hoeflich (1993). "Light curves of Type IA supernova models with different explosion mechanisms". Astronomy and Astrophysics. 270 (1–2): 223–248. Bibcode:1993A&A...270..223K.CS1 maint: Multiple names: authors list (link)


  206. ^ Dong, S.; Shappee, B. J.; Prieto, J. L.; Jha, S. W.; Stanek, K. Z.; Holoien, T. W.- S.; Kochanek, C. S.; Thompson, T. A.; Morrell, N.; Thompson, I. B.; et al. (15 January 2016). "ASASSN-15lh: A highly super-luminous supernova". Science. 351 (6270): 257–260. arXiv:1507.03010. Bibcode:2016Sci...351..257D. doi:10.1126/science.aac9613. PMID 26816375.


  207. ^ McBreen, S; Krühler, T; Rau, A; Greiner, J; Kann, D. A; Savaglio, S; Afonso, P; Clemens, C; Filgas, R; Klose, S; Küpüc Yoldas, A; Olivares E, F; Rossi, A; Szokoly, G. P; Updike, A; Yoldas, A (2010). "Optical and near-infrared follow-up observations of four Fermi/LAT GRBs: Redshifts, afterglows, energetics and host galaxies". Astronomy and Astrophysics. 516 (71): A71. arXiv:1003.3885. Bibcode:2010A&A...516A..71M. doi:10.1051/0004-6361/200913734.


  208. ^ Cenko, S. B; Frail, D. A; Harrison, F. A; Haislip, J. B; Reichart, D. E; Butler, N. R; Cobb, B. E; Cucchiara, A; Berger, E; Bloom, J. S; Chandra, P; Fox, D. B; Perley, D. A; Prochaska, J. X; Filippenko, A. V; Glazebrook, K; Ivarsen, K. M; Kasliwal, M. M; Kulkarni, S. R; LaCluyze, A. P; Lopez, S; Morgan, A. N; Pettini, M; Rana, V. R (2010). "Afterglow Observations of Fermi-LAT Gamma-Ray Bursts and the Emerging Class of Hyper-Energetic Events". The Astrophysical Journal. 732 (1): 29. arXiv:1004.2900. Bibcode:2011ApJ...732...29C. doi:10.1088/0004-637X/732/1/29.


  209. ^ Cenko, S. B; Frail, D. A; Harrison, F. A; Kulkarni, S. R; Nakar, E; Chandra, P; Butler, N. R; Fox, D. B; Gal-Yam, A; Kasliwal, M. M; Kelemen, J; Moon, D. -S; Price, P. A; Rau, A; Soderberg, A. M; Teplitz, H. I; Werner, M. W; Bock, D. C. -J; Bloom, J. S; Starr, D. A; Filippenko, A. V; Chevalier, R. A; Gehrels, N; Nousek, J. N; Piran, T; Piran, T (2010). "The Collimation and Energetics of the Brightest Swift Gamma-Ray Bursts". The Astrophysical Journal. 711 (2): 641–654. arXiv:0905.0690. Bibcode:2010ApJ...711..641C. doi:10.1088/0004-637X/711/2/641.


  210. ^ url= http://tsvi.phys.huji.ac.il/presentations/Frail_AstroExtreme.pdf Archived 1 August 2014 at the Wayback Machine


  211. ^ url= http://fermi.gsfc.nasa.gov/science/mtgs/grb2010/tue/Dale_Frail.ppt


  212. ^ "A Hypernova: The Super-charged Supernova and its link to Gamma-Ray Bursts". Imagine the Universe!. NASA. Retrieved 9 December 2011. With a power about 100 times that of the already astonishingly powerful "typical" supernova


  213. ^ "Sun Fact Sheet". NASA. Retrieved 15 October 2011.


  214. ^ "Conversion from kg to J". NIST. Retrieved 4 November 2011.


  215. ^ Abbott, B.; et al. (2016). "Observation of Gravitational Waves from a Binary Black Hole Merger". Physical Review Letters. 116 (6): 061102. arXiv:1602.03837. Bibcode:2016PhRvL.116f1102A. doi:10.1103/PhysRevLett.116.061102. PMID 26918975.


  216. ^ "Fermi's record breaking gamma-ray burst".


  217. ^ Cavagnolo, K. W; McNamara, B. R; Wise, M. W; Nulsen, P. E. J; Brüggen, M; Gitti, M; Rafferty, D. A (2011). "A Powerful AGN Outburst in RBS 797". The Astrophysical Journal. 732 (2): 71. arXiv:1103.0630. Bibcode:2011ApJ...732...71C. doi:10.1088/0004-637X/732/2/71.


  218. ^ url= http://iopscience.iop.org/1538-4357/625/1/L9/fulltext/19121.text.html


  219. ^ Jim Brau. "The Milky Way Galaxy". Retrieved 4 November 2011.


  220. ^ "Conversion from kg to J". NIST. Retrieved 4 November 2011.


  221. ^ Karachentsev, I. D.; Kashibadze, O. G. (2006). "Masses of the local group and of the M81 group estimated from distortions in the local velocity field". Astrophysics. 49 (1): 3–18. Bibcode:2006Ap.....49....3K. doi:10.1007/s10511-006-0002-6.


  222. ^ "Conversion from kg to J". NIST. Retrieved 4 November 2011.


  223. ^ Einasto, M.; et al. (December 2007). "The richest superclusters. I. Morphology". Astronomy and Astrophysics. 476 (2): 697–711. arXiv:0706.1122. Bibcode:2007A&A...476..697E. doi:10.1051/0004-6361:20078037.


  224. ^ "Big Bang Energy". Archived from the original on 19 August 2014. Retrieved 26 December 2016.CS1 maint: BOT: original-url status unknown (link)












Popular posts from this blog

Xamarin.iOS Cant Deploy on Iphone

Glorious Revolution

Dulmage-Mendelsohn matrix decomposition in Python