Orders of magnitude (energy)
This list compares various energies in joules (J), organized by order of magnitude.
Contents
1 Below 1 J
2 1 to 105 J
3 106 to 1011 J
4 1012 to 1017 J
5 1018 to 1023 J
6 Over 1024 J
7 SI multiples
8 See also
9 Notes
Below 1 J
Factor (joules) | SI prefix | Value | Item |
---|---|---|---|
10−34 | 6.626×10−34 J | Photon energy of a photon with a frequency of 1 hertz.[1] | |
10−33 | 2×10−33 J | Average kinetic energy of translational motion of a molecule at the lowest temperature reached, 100 picokelvins as of 1999[update][2] | |
10−28 | | 6.6×10−28 J | Energy of a typical AM radio photon (1 MHz) (4×10−9eV)[3] |
10−24 | Yocto- (yJ) | 1.6×10−24 J | Energy of a typical microwave oven photon (2.45 GHz) (1×10−5eV)[4][5] |
10−23 | 2×10−23 J | Average kinetic energy of translational motion of a molecule in the Boomerang Nebula, the coldest place known outside of a laboratory, at a temperature of 1 kelvin[6][7] | |
10−22 | | 2–3000×10−22 J | Energy of infrared light photons[8] |
10−21 | Zepto- (zJ) | 1.7×10−21 J | 1 kJ/mol, converted to energy per molecule[9] |
2.1×10−21 J | Thermal energy in each degree of freedom of a molecule at 25 °C (kT/2) (0.01 eV)[10] | ||
2.856×10−21 J | By Landauer's principle, the minimum amount of energy required at 25 °C to change one bit of information | ||
3–7×10−21 J | Energy of a van der Waals interaction between atoms (0.02–0.04 eV)[11][12] | ||
4.1×10−21 J | The "kT" constant at 25 °C, a common rough approximation for the total thermal energy of each molecule in a system (0.03 eV)[13] | ||
7–22×10−21 J | Energy of a hydrogen bond (0.04 to 0.13 eV)[11][14] | ||
10−20 | | 4.5×10−20 J | Upper bound of the mass-energy of a neutrino in particle physics (0.28 eV)[15][16] |
10−19 | | 1.6×10−19 J | ≈1 electronvolt (eV)[17] |
3–5×10−19 J | Energy range of photons in visible light[18][19] | ||
3–14×10−19 J | Energy of a covalent bond (2–9 eV)[11][20] | ||
5–200×10−19 J | Energy of ultraviolet light photons[8] | ||
10−18 | Atto- (aJ) | | |
10−17 | | 2–2000×10−17 J | Energy range of X-ray photons[8] |
10−16 | | ||
10−15 | Femto- (fJ) | 3 × 10−15 J | Average kinetic energy of one human red blood cell.[21][22][23] |
10−14 | | 1×10−14 J | Sound energy (vibration) transmitted to the eardrums by listening to a whisper for one second.[24][25][26] |
> 2×10−14 J | Energy of gamma ray photons[8] | ||
2.7×10−14 J | Upper bound of the mass-energy of a muon neutrino[27][28] | ||
8.2×10−14 J | Rest mass-energy of an electron[29] | ||
10−13 | 1.6×10−13 J | 1 megaelectronvolt (MeV)[30] | |
10−12 | Pico- (pJ) | 2.3×10−12 J | Kinetic energy of neutrons produced by D-T fusion, used to trigger fission (14.1 MeV)[31][32] |
10−11 | | 3.4×10−11 J | Average total energy released in the nuclear fission of one uranium-235 atom (215 MeV)[33][34] |
10−10 | | 1.5030×10−10 J | Rest mass-energy of a proton[35] |
1.505×10−10 J | Rest mass-energy of a neutron[36] | ||
1.6×10−10 J | 1 gigaelectronvolt (GeV)[37] | ||
3×10−10 J | Rest mass-energy of a deuteron[38] | ||
6×10−10 J | Rest mass-energy of an alpha particle[39] | ||
7×10−10 J | Energy required to raise a grain of sand by 0.1mm (the thickness of a piece of paper).[40] | ||
10−9 | Nano- (nJ) | 1.6×10−9 J | 10 GeV[41] |
8×10−9 J | Initial operating energy per beam of the CERN Large Electron Positron Collider in 1989 (50 GeV)[42][43] | ||
10−8 | | 1.3×10−8 J | Mass-energy of a W boson (80.4 GeV)[44][45] |
1.5×10−8 J | Mass-energy of a Z boson (91.2 GeV)[46][47] | ||
1.6×10−8 J | 100 GeV[48] | ||
2×10−8 J | Mass-energy of the Higgs Boson (125.1 GeV)[49] | ||
6.4×10−8 J | Operating energy per proton of the CERN Super Proton Synchrotron accelerator in 1976[50][51] | ||
10−7 | | 1×10−7 J | ≡ 1 erg[52] |
1.6×10−7 J | 1 TeV (teraelectronvolt),[53] about the kinetic energy of a flying mosquito[54] | ||
10−6 | Micro- (µJ) | 1.04×10−6 J | Energy per proton in the CERN Large Hadron Collider in 2015 (6.5 TeV)[55][56] |
10−5 | | ||
10−4 | | ||
10−3 | Milli- (mJ) | | |
10−2 | Centi- (cJ) | | |
10−1 | Deci- (dJ) | 1.1×10−1 J | Energy of an American half-dollar falling 1 metre[57][58] |
1 to 105 J
100 | J | 1 J | ≡ 1 N·m (newton–metre) |
1 J | ≡ 1 W·s (watt-second) | ||
1 J | Kinetic energy produced as an extra small apple (~100 grams[59]) falls 1 meter against Earth's gravity[60] | ||
1 J | Energy required to heat 1 gram of dry, cool air by 1 degree Celsius[61] | ||
1.4 J | ≈ 1 ft·lbf (foot-pound force)[52] | ||
4.184 J | ≡ 1 thermochemical calorie (small calorie)[52] | ||
4.1868 J | ≡ 1 International (Steam) Table calorie[62] | ||
8 J | Greisen-Zatsepin-Kuzmin theoretical upper limit for the energy of a cosmic ray coming from a distant source[63][64] | ||
101 | Deca- (daJ) | 1×101 J | Flash energy of a typical pocket camera electronic flash capacitor (100–400 µF @ 330 V)[65][66] |
5×101 J | The most energetic cosmic ray ever detected[67] was most likely a single proton traveling only slightly slower than the speed of light.[68] | ||
102 | Hecto- (hJ) | 3×102 J | Energy of a lethal dose of X-rays[69] |
3×102 J | Kinetic energy of an average person jumping as high as they can[70][71][72] | ||
3.3×102 J | Energy to melt 1 g of ice[73] | ||
> 3.6×102 J | Kinetic energy of 800 g[74]standard men's javelin thrown at > 30 m/s[75] by elite javelin throwers[76] | ||
5–20×102 J | Energy output of a typical photography studio strobe light in a single flash[77] | ||
6×102 J | Kinetic energy of 2 kg[78]standard men's discus thrown at 24.4 m/s[citation needed] by the world record holder Jürgen Schult[79] | ||
6×102 J | Use of a 10-watt flashlight for 1 minute | ||
7.5×102 J | A power of 1 horsepower applied for 1 second[52] | ||
7.8×102 J | Kinetic energy of 7.26 kg[80]standard men's shot thrown at 14.7 m/s[citation needed] by the world record holder Randy Barnes[81] | ||
8.01×102 J | Amount of work needed to lift a man with an average weight (81.7 kg) one meter above Earth (or any planet with Earth gravity) | ||
103 | Kilo- (kJ) | 1.1×103 J | ≈ 1 British thermal unit (BTU), depending on the temperature[52] |
1.4×103 J | Total solar radiation received from the Sun by 1 square meter at the altitude of Earth's orbit per second (solar constant)[82] | ||
1.8×103 J | Kinetic energy of M16 rifle bullet (5.56×45mm NATO M855, 4.1 g fired at 930 m/s)[83] | ||
2.3×103 J | Energy to vaporize 1 g of water into steam[84] | ||
3×103 J | Lorentz force can crusher pinch[85] | ||
3.4×103 J | Kinetic energy of world-record men's hammer throw (7.26 kg[86] thrown at 30.7 m/s[87] in 1986)[88] | ||
3.6×103 J | ≡ 1 W·h (watt-hour)[52] | ||
4.2×103 J | Energy released by explosion of 1 gram of TNT[52][89] | ||
4.2×103 J | ≈ 1 food Calorie (large calorie) | ||
~7×103 J | Muzzle energy of an elephant gun, e.g. firing a .458 Winchester Magnum[90] | ||
9×103 J | Energy in an alkaline AA battery[91] | ||
104 | | 1.7×104 J | Energy released by the metabolism of 1 gram of carbohydrates[92] or protein[93] |
3.8×104 J | Energy released by the metabolism of 1 gram of fat[94] | ||
4–5×104 J | Energy released by the combustion of 1 gram of gasoline[95] | ||
5×104 J | Kinetic energy of 1 gram of matter moving at 10 km/s[96] | ||
105 | | 3×105 – 15×105 J | Kinetic energy of an automobile at highway speeds (1 to 5 tons[97] at 89 km/h or 55 mph)[98] |
5×105 J | Kinetic energy of 1 gram of a meteor hitting Earth[99] |
106 to 1011 J
106 | Mega- (MJ) | 1×106 J | Kinetic energy of a 2 tonne[97] vehicle at 32 metres per second (115 km/h or 72 mph)[100] |
1.2×106 J | Approximate food energy of a snack such as a Snickers bar (280 food calories)[101] | ||
3.6×106 J | = 1 kWh (kilowatt-hour) (used for electricity)[52] | ||
4.2×106 J | Energy released by explosion of 1 kilogram of TNT[52][89] | ||
8.4×106 J | Recommended food energy intake per day for a moderately active woman (2000 food calories)[102][103] | ||
107 | | 1×107 J | Kinetic energy of the armor-piercing round fired by the assault guns of the ISU-152 tank[104][citation needed] |
1.1×107 J | Recommended food energy intake per day for a moderately active man (2600 food calories)[102][105] | ||
3.7×107 J | $1 of electricity at a cost of $0.10/kWh (the US average retail cost in 2009)[106][107][108] | ||
4×107 J | Energy from the combustion of 1 cubic meter of natural gas[109] | ||
4.2×107 J | Caloric energy consumed by Olympian Michael Phelps on a daily basis during Olympic training[110] | ||
6.3×107 J | Theoretical minimum energy required to accelerate 1 kg of matter to escape velocity from Earth's surface (ignoring atmosphere)[111] | ||
108 | | 1×108 J | Kinetic energy of a 55 tonne aircraft at typical landing speed (59 m/s or 115 knots)[citation needed] |
1.1×108 J | ≈ 1 therm, depending on the temperature[52] | ||
1.1×108 J | ≈ 1 Tour de France, or ~90 hours[112] ridden at 5 W/kg[113] by a 65 kg rider[114] | ||
7.3×108 J | ≈ Energy from burning 16 kilograms of oil (using 135 kg per barrel of light crude)[citation needed] | ||
109 | Giga- (GJ) | 1–10×109 J | Energy in an average lightning bolt[115] (thunder) |
1.1×109 J | Magnetic stored energy in the world's largest toroidal superconducting magnet for the ATLAS experiment at CERN, Geneva[116] | ||
1.2×109 J | Inflight 100-ton Boeing 757-200 at 300 knots (154 m/s) | ||
1.4×109 J | Theoretical minimum amount of energy required to melt a tonne of steel (380 kWh)[117][118] | ||
2×109 J | Energy of an ordinary 61 liter gasoline tank of a car.[95][119][120] | ||
2×109 J | Planck energy, the unit of energy in Planck units[121] | ||
3×109 J | Inflight 125-ton Boeing 767-200 flying at 373 knots (192 m/s) | ||
3.3×109 J | Approximate average amount of energy expended by a human heart muscle over an 80-year lifetime[122][123] | ||
4.2×109 J | Energy released by explosion of 1 ton of TNT. | ||
4.5×109 J | Average annual energy usage of a standard refrigerator[124][125] | ||
6.1×109 J | ≈ 1 bboe (barrel of oil equivalent)[126] | ||
1010 | | 2.3×1010 J | Kinetic energy of an Airbus A380 at cruising speed (560 tonnes at 562 knots or 289 m/s) |
4.2×1010 J | ≈ 1 toe (ton of oil equivalent)[126] | ||
4.6×1010 J | Yield energy of a Massive Ordnance Air Blast bomb, the second most powerful non-nuclear weapon ever designed[127][128] | ||
7.3×1010 J | Energy consumed by the average U.S. automobile in the year 2000[129][130][131] | ||
8.6×1010 J | ≈ 1 MW·d (megawatt-day), used in the context of power plants[132] | ||
8.8×1010 J | Total energy released in the nuclear fission of one gram of uranium-235[33][34][133] | ||
1011 | 2.4×1011 J | Approximate food energy consumed by an average human in an 80-year lifetime.[134] |
1012 to 1017 J
1012 | Tera- (TJ) | 3.4×1012 J | Maximum fuel energy of an Airbus A330-300 (97,530 liters[135] of Jet A-1[136])[137] |
3.6×1012 J | 1 GW·h (gigawatt-hour)[138] | ||
4×1012 J | Electricity generated by one 20-kg CANDU fuel bundle assuming ~29%[139] thermal efficiency of reactor[140][141] | ||
4.2×1012 J | Energy released by explosion of 1 kiloton of TNT[52][142] | ||
6.4×1012 J | Energy contained in jet fuel in a Boeing 747-100B aircraft at max fuel capacity (183,380 liters[143] of Jet A-1[136])[144] | ||
1013 | | 1.1×1013 J | Energy of the maximum fuel an Airbus A380 can carry (320,000 liters[145] of Jet A-1[136])[146] |
1.2×1013 J | Orbital kinetic energy of the International Space Station (417 tonnes[147] at 7.7 km/s[148])[149] | ||
6.3×1013 J | Yield of the Little Boy atomic bomb dropped on Hiroshima in World War II (15 kilotons)[150][151] | ||
9×1013 J | Theoretical total mass-energy of 1 gram of matter[152] | ||
1014 | | 1.8×1014 J | Energy released by annihilation of 1 gram of antimatter and matter |
3.75×1014 J | Total energy released by the Chelyabinsk meteor.[153] | ||
6×1014 J | Energy released by an average hurricane in 1 second[154] | ||
1015 | Peta- (PJ) | > 1015 J | Energy released by a severe thunderstorm[155] |
1×1015 J | Yearly electricity consumption in Greenland as of 2008[156][157] | ||
4.2×1015 J | Energy released by explosion of 1 megaton of TNT[52][158] | ||
1016 | | 1×1016 J | Estimated impact energy released in forming Meteor Crater[citation needed] |
1.1×1016 J | Yearly electricity consumption in Mongolia as of 2010[156][159] | ||
9×1016 J | Mass-energy in 1 kilogram of antimatter (or matter)[160] | ||
1017 | | 1×1017 J | Energy released on the Earth's surface by the magnitude 9.1–9.3 2004 Indian Ocean earthquake[161] |
1.7×1017 J | Total energy from the Sun that strikes the face of the Earth each second[162] | ||
2.1×1017 J | Yield of the Tsar Bomba, the largest nuclear weapon ever tested (50 megatons)[163][164] | ||
4.2×1017 J | Yearly electricity consumption of Norway as of 2008[156][165] | ||
4.5×1017 J | Approximate energy needed to accelerate one ton to one-tenth of the speed of light | ||
8×1017 J | Estimated energy released by the eruption of the Indonesian volcano, Krakatoa, in 1883[166][167] |
1018 to 1023 J
1018 | Exa- (EJ) | 1.4×1018 J | Yearly electricity consumption of South Korea as of 2009[156][168] |
1019 | | 1.4×1019 J | Yearly electricity consumption in the U.S. as of 2009[156][169] |
1.4×1019J | Yearly electricity production in the U.S. as of 2009[170][171] | ||
5×1019 J | Energy released in 1 day by an average hurricane in producing rain (400 times greater than the wind energy)[154] | ||
6.4×1019 J | Yearly electricity consumption of the world as of 2008[update][172][173] | ||
6.8×1019 J | Yearly electricity generation of the world as of 2008[update][172][174] | ||
1020 | | 5×1020 J | Total world annual energy consumption in 2010[175][176] |
8×1020 J | Estimated global uranium resources for generating electricity 2005[177][178][179][180] | ||
1021 | Zetta- (ZJ) | 6.9×1021 J | Estimated energy contained in the world's natural gas reserves as of 2010[175][181] |
7.9×1021 J | Estimated energy contained in the world's petroleum reserves as of 2010[175][182] | ||
1022 | | 1.5×1022J | Total energy from the Sun that strikes the face of the Earth each day[162][183] |
2.4×1022 J | Estimated energy contained in the world's coal reserves as of 2010[175][184] | ||
2.9×1022 J | Identified global uranium-238 resources using fast reactor technology[177] | ||
3.9×1022 J | Estimated energy contained in the world's fossil fuel reserves as of 2010[175][185] | ||
4×1022 J | Estimated total energy released by the magnitude 9.1–9.3 2004 Indian Ocean earthquake[186] | ||
1023 | | ||
2.2×1023 J | Total global uranium-238 resources using fast reactor technology[177] | ||
5×1023 J | Approximate energy released in the formation of the Chicxulub Crater in the Yucatán Peninsula[187] |
Over 1024 J
1024 | Yotta- (YJ) | 5.5×1024 J | Total energy from the Sun that strikes the face of the Earth each year[162][188] |
1025 | 6×1025 J | Energy released by a typical solar flare | |
1026 | | ||
3.8×1026 J | Total energy output of the Sun each second[189] | ||
1027 | 1×1027 J | Estimate of the energy released by the impact that created the Caloris basin on Mercury[190] | |
1028 | 3.8×1028 J | Kinetic energy of the Moon in its orbit around the Earth (counting only its velocity relative to the Earth)[191][192] | |
1029 | 2.1×1029 J | Rotational energy of the Earth[193][194][195] | |
1030 | 1.8×1030 J | Gravitational binding energy of Mercury | |
1031 | 3.3×1031 J | Total energy output of the Sun each day[189][196] | |
1032 | 2×1032 J | Gravitational binding energy of the Earth[197] | |
1033 | 2.7×1033 J | Earth's kinetic energy in its orbit[198] | |
1034 | 1.2×1034 J | Total energy output of the Sun each year[189][199] | |
1039 | 6.6×1039 J | Theoretical total mass-energy of the Moon | |
1041 | | 2.276×1041 J | Gravitational binding energy of the Sun[200] |
5.4×1041 J | Theoretical total mass-energy of the Earth[201][202] | ||
1043 | | 5×1043 J | Total energy of all gamma rays in a typical gamma-ray burst[203][204] |
1044 | | 1–2×1044 J | Estimated energy released in a supernova,[205] sometimes referred to as a foe |
7044120000000000000♠1.2×1044 J | Approximate lifetime energy output of the Sun. | ||
1045 | | 7045110000000000000♠(1.1±0.2)×1045 J | Brightest observed hypernova ASASSN-15lh[206] |
few times×1045 J | Beaming-corrected 'True' total energy (Energy in gamma rays+relativistic kinetic energy) of hyper-energetic gamma-ray burst[207][208][209][210][211] | ||
1046 | 1×1046 J | Estimated energy released in a hypernova[212] | |
1047 | | 1.8×1047 J | Theoretical total mass-energy of the Sun[213][214] |
5.4×1047 J | Mass-energy emitted as gravitational waves during the merger of two black holes, originally about 30 Solar masses each, as observed by LIGO[215] | ||
8.8×1047 J | GRB 080916C - the most powerful Gamma-Ray Burst (GRB) ever recorded - total 'apparent'/isotropic (not corrected for beaming) energy output estimated at 8.8 × 1047 joules (8.8 × 1054 erg), or 4.9 times the sun’s mass turned to energy.[216] | ||
1053 | 6×1053 J | Total mechanical energy or enthalpy in the powerful AGN outburst in the RBS 797[217] | |
1054 | 3×1054 J | Total mechanical energy or enthalpy in the powerful AGN outburst in the Hercules A (3C 348)[218] | |
1055 | 1055 J | Total mechanical energy or enthalpy in the powerful AGN outburst in the MS 0735.6+7421 | |
1058 | 4×1058 J | Visible mass-energy in our galaxy, the Milky Way[219][220] | |
1059 | 1×1059 J | Total mass-energy of our galaxy, the Milky Way, including dark matter and dark energy[221][222] | |
1062 | 1–2×1062 J | Total mass-energy of the Virgo Supercluster including dark matter, the Supercluster which contains the Milky Way[223] | |
1069 | 4×1069 J | Estimated total mass-energy of the observable universe[224] |
SI multiples
Submultiples | Multiples | |||||
---|---|---|---|---|---|---|
Value | SI symbol | Name | Value | SI symbol | Name | |
10−1 J | dJ | decijoule | 101 J | daJ | decajoule | |
10−2 J | cJ | centijoule | 102 J | hJ | hectojoule | |
10−3 J | mJ | millijoule | 103 J | kJ | kilojoule | |
10−6 J | µJ | microjoule | 106 J | MJ | megajoule | |
10−9 J | nJ | nanojoule | 109 J | GJ | gigajoule | |
10−12 J | pJ | picojoule | 1012 J | TJ | terajoule | |
10−15 J | fJ | femtojoule | 1015 J | PJ | petajoule | |
10−18 J | aJ | attojoule | 1018 J | EJ | exajoule | |
10−21 J | zJ | zeptojoule | 1021 J | ZJ | zettajoule | |
10−24 J | yJ | yoctojoule | 1024 J | YJ | yottajoule |
This SI unit is named after James Prescott Joule. As with every International System of Units (SI) unit named for a person, the first letter of its symbol is upper case (J). However, when an SI unit is spelled out in English, it is treated as a common noun and should always begin with a lower case letter (joule)—except in a situation where any word in that position would be capitalized, such as at the beginning of a sentence or in material using title case.
See also
- Conversion of units of energy
- Energies per unit mass
- Energy conversion efficiency
- List of energy topics
- Metric system
- Scientific notation
- TNT equivalent
Notes
^ "Planck's constant | physics | Britannica.com". britannica.com. Retrieved 26 December 2016..mw-parser-output cite.citation{font-style:inherit}.mw-parser-output .citation q{quotes:"""""""'""'"}.mw-parser-output .citation .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-maint{display:none;color:#33aa33;margin-left:0.3em}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}
^ Calculated: KEavg ≈ (3/2) × T × 1.38×10−23 = (3/2) × 1×10−10 × 1.38×10−23 ≈ 2.07×10−33 J
^ Calculated: Ephoton = hν = 6.626×10−34 J-s × 1×106 Hz = 6.6×10−28 J. In eV: 6.6×10−28 J / 1.6×10−19 J/eV = 4.1×10−9 eV.
^ "Frequency of a Microwave Oven". The Physics Factbook. Retrieved 15 November 2011.
^ Calculated: Ephoton = hν = 6.626×10−34 J-s × 2.45×108 Hz = 1.62×10−24 J. In eV: 1.62×10−24 J / 1.6×10−19 J/eV = 1.0×10−5 eV.
^ "Boomerang Nebula boasts the coolest spot in the Universe". JPL. Retrieved 13 November 2011.
^ Calculated: KEavg ≈ (3/2) × T × 1.38×10−23 = (3/2) × 1 × 1.38×10−23 ≈ 2.07×10−23 J
^ abcd "Wavelength, Frequency, and Energy". Imagine the Universe. NASA. Retrieved 15 November 2011.
^ Calculated: 1×103 J / 6.022×1023 entities per mole = 1.7×10−21 J per entity
^ Calculated: 1.381×10−23 J/K × 298.15 K / 2 = 2.1×10−21 J
^ abc "Bond Lengths and Energies". Chem 125 notes. UCLA. Archived from the original on 23 August 2011. Retrieved 13 November 2011.
^ Calculated: 2 to 4 kJ/mol = 2×103 J / 6.022×1023 molecules/mol = 3.3×10−21 J. In eV: 3.3×10−21 J / 1.6×10−19 J/eV = 0.02 eV. 4×103 J / 6.022×1023 molecules/mol = 6.7×10−21 J. In eV: 6.7×10−21 J / 1.6×10−19 J/eV = 0.04 eV.
^ Ansari, Anjum. "Basic Physical Scales Relevant to Cells and Molecules". Physics 450. Retrieved 13 November 2011.
^ Calculated: 4 to 13 kJ/mol. 4 kJ/mol = 4×103 J / 6.022×1023 molecules/mol = 6.7×10−21 J. In eV: 6.7×10−21 J / 1.6×10−19 eV/J = 0.042 eV. 13 kJ/mol = 13×103 J / 6.022×1023 molecules/mol = 2.2×10−20 J. In eV: 13×103 J / 6.022×1023 molecules/mol / 1.6×10−19 eV/J = 0.13 eV.
^ Thomas, S.; Abdalla, F.; Lahav, O. (2010). "Upper Bound of 0.28 eV on Neutrino Masses from the Largest Photometric Redshift Survey". Physical Review Letters. 105 (3): 031301. arXiv:0911.5291. Bibcode:2010PhRvL.105c1301T. doi:10.1103/PhysRevLett.105.031301. PMID 20867754.
^ Calculated: 0.28 eV × 1.6×10−19 J/eV = 4.5×10−20 J
^ "CODATA Value: electron volt". NIST. Retrieved 4 November 2011.
^ "BASIC LAB KNOWLEDGE AND SKILLS". Retrieved 5 November 2011.Visible wavelengths are roughly from 390 nm to 780 nm
^ Calculated: E = hc/λ. E780 nm = 6.6×10−34 kg-m2/s × 3×108 m/s / (780×10−9 m) = 2.5×10−19 J. E_390 _nm = 6.6×10−34 kg-m2/s × 3×108 m/s / (390×10−9 m) = 5.1×10−19 J
^ Calculated: 50 kcal/mol × 4.184 J/calorie / 6.0×1022e23 molecules/mol = 3.47×10−19 J. (3.47×10−19 J / 1.60×10−19 eV/J = 2.2 eV.) and 200 kcal/mol × 4.184 J/calorie / 6.0×1022e23 molecules/mol = 1.389×10−18 J. (7.64×10−19 J / 1.60×10−19 eV/J = 8.68 eV.)
^ Phillips, Kevin; Jacques, Steven; McCarty, Owen (2012). "How much does a cell weigh?". Physical Review Letters. 109 (11): 118105. Bibcode:2012PhRvL.109k8105P. doi:10.1103/PhysRevLett.109.118105. PMC 3621783. PMID 23005682.Roughly 27 picograms
^ Bob Berman. "Our Bodies' Velocities, By the Numbers". Retrieved 19 August 2016.The [...] blood [...] flow[s] at an average speed of 3 to 4 mph
^ Calculated: 1/2 × 27×10−12 g × (3.5 miles per hour)2 = 3×10−15 J
^ "Physics of the Body" (PDF). Notre Dame. Retrieved 19 August 2016.. "The eardrum is a [...] membran[e] with an area of 65 mm2."
^ "Intensity and the Decibel Scale". Physics Classroom. Retrieved 19 August 2016.
^ Calculated: two eardrums ≈ 1 cm2. 1×10−6 W/m2 × 1×10−4 m2 × 1 s = 1×10−14 J
^ Thomas J Bowles (2000). P. Langacker, ed. Neutrinos in physics and astrophysics: from 10–33 to 1028 cm: TASI 98 : Boulder, Colorado, USA, 1–26 June 1998. World Scientific. p. 354. ISBN 978-981-02-3887-2. Retrieved 11 November 2011.an upper limit ov m_v_u < 170 keV
^ Calculated: 170×103 eV × 1.6×10−19 J/eV = 2.7×10−14 J
^ "electron mass energy equivalent". NIST. Retrieved 4 November 2011.
^ "Conversion from eV to J". NIST. Retrieved 4 November 2011.
^ Muller, Richard A. (2002). "The Sun, Hydrogen Bombs, and the physics of fusion". Archived from the original on 2 April 2012. Retrieved 5 November 2011.The neutron comes out with high energy of 14.1 MeV
^ "Conversion from eV to J". NIST. Retrieved 4 November 2011.
^ ab "Energy From Uranium Fission". HyperPhysics. Retrieved 8 November 2011.
^ ab "Conversion from eV to J". NIST. Retrieved 4 November 2011.
^ "proton mass energy equivalent". NIST. Retrieved 4 November 2011.
^ "neutron mass energy equivalent". NIST. Retrieved 4 November 2011.
^ "Conversion from eV to J". NIST. Retrieved 4 November 2011.
^ "deuteron mass energy equivalent". NIST. Retrieved 4 November 2011.
^ "alpha particle mass energy equivalent". NIST. Retrieved 4 November 2011.
^ Calculated: 7×10−4 g × 9.8 m/s2 × 1×10−4 m
^ "Conversion from eV to J". NIST. Retrieved 4 November 2011.
^ Myers, Stephen. "The LEP Collider". CERN. Retrieved 14 November 2011.the LEP machine energy is about 50 GeV per beam
^ Calculated: 50×109 eV × 1.6×10−19 J/eV = 8×10−9 J
^ "W". PDG Live. Particle Data Group. Retrieved 4 November 2011.
[permanent dead link]
^ "Conversion from eV to J". NIST. Retrieved 4 November 2011.
^ Amsler, C.; Doser, M.; Antonelli, M.; Asner, D.; Babu, K.; Baer, H.; Band, H.; Barnett, R.; Bergren, E.; Beringer, J.; Bernardi, G.; Bertl, W.; Bichsel, H.; Biebel, O.; Bloch, P.; Blucher, E.; Blusk, S.; Cahn, R. N.; Carena, M.; Caso, C.; Ceccucci, A.; Chakraborty, D.; Chen, M. -C.; Chivukula, R. S.; Cowan, G.; Dahl, O.; d'Ambrosio, G.; Damour, T.; De Gouvêa, A.; et al. (2008). "Review of Particle Physics⁎". Physics Letters B. 667 (1): 1–6. Bibcode:2008PhLB..667....1A. doi:10.1016/j.physletb.2008.07.018.
[permanent dead link]
^ "Conversion from eV to J". NIST. Retrieved 4 November 2011.
^ "Conversion from eV to J". NIST. Retrieved 4 November 2011.
^ ATLAS; CMS (26 March 2015). "Combined Measurement of the Higgs Boson Mass in pp Collisions at √s=7 and 8 TeV with the ATLAS and CMS Experiments". Physical Review Letters. 114 (19): 191803. arXiv:1503.07589. Bibcode:2015PhRvL.114s1803A. doi:10.1103/PhysRevLett.114.191803.
^ Adams, John. "400 GeV Proton Synchrotron". Excertp from the CERN Annual Report 1976. CERN. Retrieved 14 November 2011.A circulating proton beam of 400 GeV energy was first achieved in the SPS on 17 June 1976
^ Calculated: 400×109 eV × 1.6×10−19 J/eV = 6.4×10−8 J
^ abcdefghijkl "Appendix B8—Factors for Units Listed Alphabetically". NIST Guide for the Use of the International System of Units (SI). NIST. Retrieved 4 November 2011.1.355818
^ "Conversion from eV to J". NIST. Retrieved 4 November 2011.
^ "Chocolate bar yardstick". Archived from the original on 26 February 2014. Retrieved 24 January 2014.A TeV is actually a very tiny amount of energy. A popular analogy is to a flying mosquito.
^ "First successful beam at record energy of 6.5 TeV". Retrieved 28 April 2015.
^ Calculated: 6.5×1012 eV per beam × 1.6×10−19 J/eV = 1.04×10−6 J
^ "Coin specifications". United States Mint. Retrieved 2 November 2011.11.340 g
^ Calculated: m×g×h = 11.34×10−3 kg × 9.8 m/s2 × 1 m = 1.1×10−1 J
^ "Apples, raw, with skin (NDB No. 09003)". USDA Nutrient Database. USDA. Archived from the original on 3 March 2015. Retrieved 8 December 2011.
^ Calculated: m×g×h = 1×10−1 kg × 9.8 m/s2 × 1 m = 1 J
^ "Specific Heat of Dry Air". Engineering Toolbox. Retrieved 2 November 2011.
^ "Footnotes". NIST Guide to the SI. NIST. Retrieved 4 November 2011.
^ "Physical Motivations". ULTRA Home Page (EUSO project). Dipartimento di Fisica di Torino. Retrieved 12 November 2011.
^ Calculated: 5×1019 eV × 1.6×10−19 J/ev = 8 J
^ "Notes on the Troubleshooting and Repair of Electronic Flash Units and Strobe Lights and Design Guidelines, Useful Circuits, and Schematics". Retrieved 8 December 2011.The energy storage capacitor for pocket cameras is typically 100 to 400 uF at 330 V (charged to 300 V) with a typical flash energy of 10 W-s.
^ "Teardown: Digital Camera Canon PowerShot |". electroelvis.com. 2 September 2012. Archived from the original on 1 August 2013. Retrieved 6 June 2013.
^ "The Fly's Eye (1981–1993)". HiRes. Retrieved 14 November 2011.
^
Bird, D. J. (March 1995). "Detection of a cosmic ray with measured energy well beyond the expected spectral cutoff due to cosmic microwave radiation". Astrophysical Journal, Part 1. 441 (1): 144–150. arXiv:astro-ph/9410067. Bibcode:1995ApJ...441..144B. doi:10.1086/175344.
^ "Ionizing Radiation". General Chemistry Topic Review: Nuclear Chemistry. Bodner Research Web. Retrieved 5 November 2011.
^ "Vertical Jump Test". Topend Sports. Retrieved 12 December 2011.41–50 cm (males) 31–40 cm (females)
^ "Mass of an Adult". The Physics Factbook. Retrieved 13 December 2011.70 kg
^ Kinetic energy at start of jump = potential energy at high point of jump. Using a mass of 70 kg and a high point of 40 cm => energy = m×g×h = 70 kg × 9.8 m/s2 × 40×10−2 m = 274 J
^ "Latent Heat of Melting of some common Materials". Engineering Toolbox. Retrieved 10 June 2013.334 kJ/kg
^ "Javelin Throw – Introduction". IAAF. Retrieved 12 December 2011.
^ Young, Michael. "Developing Event Specific Strength for the Javelin Throw" (PDF). Retrieved 13 December 2011.For elite athletes, the velocity of a javelin release has been measured in excess of 30m/s
[permanent dead link]
^ Calculated: 1/2 × 0.8 kg × (30 m/s)2 = 360 J
^ Greenspun, Philip. "Studio Photography". Archived from the original on 29 September 2007. Retrieved 13 December 2011.Most serious studio photographers start with about 2000 watts-seconds
^ "Discus Throw – Introduction". IAAF. Retrieved 12 December 2011.
^ Calculated: 1/2 × 2 kg × (24.4 m/s)2 = 595.4 J
^ "Shot Put – Introduction". IAAF. Retrieved 12 December 2011.
^ Calculated: 1/2 × 7.26 kg × (14.7 m/s)2 = 784 J
^ Kopp, G.; Lean, J. L. (2011). "A new, lower value of total solar irradiance: Evidence and climate significance". Geophysical Research Letters. 38 (1): n/a. Bibcode:2011GeoRL..38.1706K. doi:10.1029/2010GL045777.
^ "Intermediate power ammunition for automatic assault rifles". Modern Firearms. World Guns. Archived from the original on 10 August 2013. Retrieved 12 December 2011.
^ "Fluids - Latent Heat of Evaporation". Engineering Toolbox. Retrieved 10 June 2013.2257 kJ/kg
^ powerlabs.org – The PowerLabs Solid State Can Crusher!, 2002
^ "Hammer Throw – Introduction". IAAF. Retrieved 12 December 2011.
^ Otto, Ralf M. "HAMMER THROW WR PHOTOSEQUENCE – YURIY SEDYKH" (PDF). Retrieved 4 November 2011.The total release velocity is 30.7 m/sec
^ Calculated: 1/2 × 7.26 kg × (30.7 m/s)2 = 3420 J
^ ab 4.2×109 J/ton of TNT-equivalent × (1 ton/1×106 grams) = 4.2×103 J/gram of TNT-equivalent
^ ".458 Winchester Magnum" (PDF). Accurate Powder. Western Powders Inc. Archived from the original (PDF) on 28 September 2007. Retrieved 7 September 2010.
^ "Battery energy storage in various battery sizes". AllAboutBatteries.com. Archived from the original on 4 December 2011. Retrieved 15 December 2011.
^ "Energy Density of Carbohydrates". The Physics Factbook. Retrieved 5 November 2011.
^ "Energy Density of Protein". The Physics Factbook. Retrieved 5 November 2011.
^ "Energy Density of Fats". The Physics Factbook. Retrieved 5 November 2011.
^ ab "Energy Density of Gasoline". The Physics Factbook. Retrieved 5 November 2011.
^ Calculated: E = 1/2 m×v2 = 1/2 × (1×10−3 kg) × (1×104 m/s)2 = 5×104 J.
^ ab "List of Car Weights". LoveToKnow. Retrieved 13 December 2011.3000 to 12000 pounds
^ Calculated: Using car weights of 1 ton to 5 tons. E = 1/2 m×v2 = 1/2 × (1×103 kg) × (55 mph × 1600 m/mi / 3600 s/hr) = 3.0×105 J. E = 1/2 × (5×103 kg) × (55 mph × 1600 m/mi / 3600 s/hr) = 15×105 J.
^ Muller, Richard A. "Kinetic Energy in a meteor". Old Physics 10 notes. Archived from the original on 2 April 2012. Retrieved 13 November 2011.
^ Calculated: KE = 1/2 × 2×103 kg × (32 m/s)2 = 1.0×106 J
^ "Candies, MARS SNACKFOOD US, SNICKERS Bar (NDB No. 19155)". USDA Nutrient Database. USDA. Archived from the original on 3 March 2015. Retrieved 14 November 2011.
^ ab "How to Balance the Food You Eat and Your Physical Activity and Prevent Obesity". Healthy Weight Basics. National Heart Lung and Blood Institutde. Retrieved 14 November 2011.
^ Calculated: 2000 food calories = 2.0×106 cal × 4.184 J/cal = 8.4×106 J
^ Calculated: 1/2 × m × v2 = 1/2 × 48.78 kg × (655 m/s)2 = 1.0×107 J.
^ Calculated: 2600 food calories = 2.6×106 cal × 4.184 J/cal = 1.1×107 J
^ "Table 3.3 Consumer Price Estimates for Energy by Source, 1970–2009". Annual Energy Review. US Energy Information Administration. 19 October 2011. Retrieved 17 December 2011.$28.90 per million BTU
^ Calculated J per dollar: 1 million BTU/$28.90 = 1×106 BTU / 28.90 dollars × 1.055×103 J/BTU = 3.65×107 J/dollar
^ Calculated cost per kWh: 1 kWh × 3.60×106 J/kWh / 3.65×107 J/dollar = 0.0986 dollar/kWh
^ "Energy in a Cubic Meter of Natural Gas". The Physics Factbook. Retrieved 15 December 2011.
^ "The Olympic Diet of Michael Phelps". WebMD. Retrieved 28 December 2011.
^ Cline, James E. D. "Energy to Space". Retrieved 13 November 2011.6.27×107 Joules / Kg
^ "Tour de France Winners, Podium, Times". Bike Race Info. Retrieved 10 December 2011.
^ "Watts/kg". Flamme Rouge. Archived from the original on 2 January 2012. Retrieved 4 November 2011.
^ Calculated: 90 hr × 3600 seconds/hr × 5 W/kg × 65 kg = 1.1×108 J
^ Smith, Chris. "How do Thunderstorms Work?". The Naked Scientists. Retrieved 15 November 2011.It discharges about 1–10 billion joules of energy
^ "Powering up ATLAS's mega magnet". Spotlight on... CERN. Archived from the original on 30 November 2011. Retrieved 10 December 2011.magnetic energy of 1.1 Gigajoules
^ "ITP Metal Casting: Melting Efficiency Improvement" (PDF). ITP Metal Casting. U.S. Department of Energy. Retrieved 14 November 2011.377 kWh/mt
^ Calculated: 380 kW-h × 3.6×106 J/kW-h = 1.37×109 J
^ Bell Fuels. "Lead-Free Gasoline Material Safety Data Sheet". NOAA. Archived from the original on 20 August 2002. Retrieved 6 July 2008.
^ thepartsbin.com – Volvo Fuel Tank: Compare at The Parts Bin, 6 May 2012
^ Ep=ℏc5G{displaystyle E_{p}={sqrt {frac {hbar c^{5}}{G}}}}
^ "Power of a Human Heart". The Physics Factbook. Retrieved 10 December 2011.The mechanical power of the human heart is ~1.3 watts
^ Calculated: 1.3 J/s × 80 years × 3.16×107 s/year = 3.3×109 J
^ "U.S. Household Electricity Uses: A/C, Heating, Appliances". U.S. HOUSEHOLD ELECTRICITY REPORT. EIA. Retrieved 13 December 2011.For refrigerators in 2001, the average UEC was 1,239 kWh
^ Calculated: 1239 kWh × 3.6×106 J/kWh = 4.5×109 J
^ ab Energy Units, by Arthur Smith, 21 January 2005
^ "Top 10 Biggest Explosions". Listverse. 2011-11-28. Retrieved 10 December 2011.a yield of 11 tons of TNT
^ Calculated: 11 tons of TNT-equivalent × 4.184×109 J/ton of TNT-equivalent = 4.6×1010 J
^ "Emission Facts: Average Annual Emissions and Fuel Consumption for Passenger Cars and Light Trucks". EPA. Retrieved 12 December 2011.581 gallons of gasoline
^ "200 Mile-Per-Gallon Cars?". Archived from the original on 19 December 2011. Retrieved 12 December 2011.a gallon of gas ... 125 million joules of energy
^ Calculated: 581 gallons × 125×106 J/gal = 7.26×1010 J
^ Calculated: 1×106 watts × 86400 seconds/day = 8.6×1010 J
^ Calculated: 3.44×10−10 J/U-235-fission × 1×10−3 kg / (235 amu per U-235-fission × 1.66×10−27 amu/kg) = 8.82×10−10 J
^ Calculated: 2000 kcal/day × 365 days/year × 80 years = 2.4×1011 J
^ "A330-300 Dimensions & key data". Airbus. Retrieved 12 December 2011.97530 litres
^ abc "Archived copy" (PDF). Archived from the original (PDF) on 8 June 2011. Retrieved 2011-08-19.CS1 maint: Archived copy as title (link)
^ Calculated: 97530 liters × 0.804 kg/L × 43.15 MJ/kg = 3.38×1012 J
^ Calculated: 1×109 watts × 3600 seconds/hour
^ Weston, Kenneth. "Chapter 10. Nuclear Power Plants" (PDF). Energy Conversion. Retrieved 13 December 2011.The thermal efficiency of a CANDU plant is only about 29%
^ "CANDU and Heavy Water Moderated Reactors". Retrieved 12 December 2011.fuel burnup in a CANDU is only 6500 to 7500 MWd per metric ton uranium
^ Calculated: 7500×106 watt-days/tonne × (0.020 tonnes per bundle) × 86400 seconds/day = 1.3×1013 J of burnup energy. Electricity = burnup × ~29% efficiency = 3.8×1012 J
^ Calculated: 4.2×109 J/ton of TNT-equivalent × 1×103 tons/megaton = 4.2×1012 J/megaton of TNT-equivalent
^ "747 Classics Technical Specs". Boeing. Archived from the original on 10 December 2007. Retrieved 12 December 2011.183,380 L
^ Calculated: 183380 liters × 0.804 kg/L × 43.15 MJ/kg = 6.36×1012 J
^ "A380-800 Dimensions & key data". Airbus. Retrieved 12 December 2011.320,000 L
^ Calculated: 320,000 l × 0.804 kg/L × 43.15 MJ/kg = 11.1×1012 J
^ "International Space Station: The ISS to Date". NASA. Retrieved 23 August 2011.
^ "The wizards of orbits". European Space Agency. Retrieved 10 December 2011.The International Space Station, for example, flies at 7.7 km/s in one of the lowest practicable orbits
^ Calculated: E = 1/2 m.v2 = 1/2 × 417000 kg × (7700m/s)2 = 1.2×1013 J
^ "What was the yield of the Hiroshima bomb?". Warbird's Forum. Retrieved 4 November 2011.21 kt
^ Calculated: 15 kt = 15×109 grams of TNT-equivalent × 4.2×103 J/gram TNT-equivalent = 6.3×1013 J
^ "Conversion from kg to J". NIST. Retrieved 4 November 2011.
^ "JPL - Fireballs and bolides". Jet Propulsion Laboratory. NASA. Retrieved 13 April 2017.
^ ab "How much energy does a hurricane release?". FAQ : HURRICANES, TYPHOONS, AND TROPICAL CYCLONES. NOAA. Retrieved 12 November 2011.
^ "The Gathering Storms". COSMOS. Archived from the original on 4 April 2012. Retrieved 10 December 2011.
^ abcde "Country Comparison :: Electricity – consumption". The World Factbook. CIA. Archived from the original on 28 January 2012. Retrieved 11 December 2011.
^ Calculated: 288.6×106 kWh × 3.60×106 J/kWh = 1.04×1015 J
^ Calculated: 4.2×109 J/ton of TNT-equivalent × 1×106 tons/megaton = 4.2×1015 J/megaton of TNT-equivalent
^ Calculated: 3.02×109 kWh × 3.60×106 J/kWh = 1.09×1016 J
^ Calculated: E = mc2 = 1 kg × (2.998×108 m/s)2 = 8.99×1016 J
^ "USGS Energy and Broadband Solution". National Earthquake Information Center, US Geological Survey. Archived from the original on 4 April 2010. Retrieved 9 December 2011.
^ abc The Earth has a cross section of 1.274×1014square meters and the solar constant is 1361 watts per square meter.
^ "The Soviet Weapons Program – The Tsar Bomba". The Nuclear Weapon Archive. Retrieved 4 November 2011.
^ Calculated: 50×106 tons TNT-equivalent × 4.2×109 J/ton TNT-equivalent = 2.1×1017 J
^ Calculated: 115.6×109 kWh × 3.60×106 J/kWh = 4.16×1017 J
^ Alexander, R. McNeill (1989). Dynamics of Dinosaurs and Other Extinct Giants. Columbia University Press. p. 144. ISBN 978-0-231-06667-9.the explosion of the island volcano Krakatoa in 1883, had about 200 megatonnes energy.
^ Calculated: 200×106 tons of TNT equivalent × 4.2×109 J/ton of TNT equivalent = 8.4×1017 J
^ Calculated: 402×109 kWh × 3.60×106 J/kWh = 1.45×1017 J
^ Calculated: 3.741×1012 kWh × 3.600×106 J/kWh = 1.347×1019 J
^ "United States". The World Factbook. USA. Retrieved 11 December 2011.
^ Calculated: 3.953×1012 kWh × 3.600×106 J/kWh = 1.423×1019 J
^ ab "World". The World Factbook. CIA. Retrieved 11 December 2011.
^ Calculated: 17.8×1012 kWh × 3.60×106 J/kWh = 6.41×1019 J
^ Calculated: 18.95×1012 kWh × 3.60×106 J/kWh = 6.82×1019 J
^ abcde "Statistical Review of World Energy 2011" (PDF). BP. Archived from the original (PDF) on 2 September 2011. Retrieved 9 December 2011.
^ Calculated: 12002.4×106 tonnes of oil equivalent × 42×109 J/tonne of oil equivalent = 5.0×1020 J
^ abc "Global Uranium Resources to Meet Projected Demand | International Atomic Energy Agency". iaea.org. June 2006. Retrieved 26 December 2016.
^ "U.S. Energy Information Administration, International Energy Generation".
^ "U.S. EIA International Energy Outlook 2007". eia.doe.gov. Retrieved 26 December 2016.
^ Final number is computed. Energy Outlook 2007 shows 15.9% of world energy is nuclear. IAEA estimates conventional uranium stock, at today's prices is sufficient for 85 years. Convert billion kilowatt-hours to joules then: 6.25×1019×0.159×85 = 8.01×1020.
^ Calculated: "6608.9 trillion cubic feet" => 6608.9×103 billion cubic feet × 0.025 million tonnes of oil equivalent/billion cubic feet × 1×106 tonnes of oil equivalent/million tonnes of oil equivalent × 42×109 J/tonne of oil equivalent = 6.9×1021 J
^ Calculated: "188.8 thousand million tonnes" => 188.8×109 tonnes of oil × 42×109 J/tonne of oil = 7.9×1021 J
^ Calculated: 1.27×1014 m2 × 1370 W/m2 × 86400 s/day = 1.5×1022 J
^ Calculated: 860938 million tonnes of coal => 860938×106 tonnes of coal × (1/1.5 tonne of oil equivalent / tonne of coal) × 42×109 J/tonne of oil equivalent = 2.4×1022 J
^ Calculated: natural gas + petroleum + coal = 6.9×1021 J + 7.9×1021 J + 2.4×1022 J = 3.9×1022 J
^ "USGS, Harvard Moment Tensor Solution". National Earthquake Information Center. 26 December 2004. Archived from the original on 17 January 2010. Retrieved 9 December 2011.
^ Bralower, Timothy J.; Charles K. Paull; R. Mark Leckie (April 1998). "The Cretaceous–Tertiary boundary cocktail: Chicxulub impact triggers margin collapse and extensive sediment gravity flows" (PDF). Geology. 26 (4): 331–334. Bibcode:1998Geo....26..331B. doi:10.1130/0091-7613(1998)026<0331:tctbcc>2.3.co;2. Archived from the original (PDF) on 28 November 2007. Retrieved 6 June 2013.The kinetic energy derived by the impact is estimated at ~5 × 1030 ergs
^ Calculated: 1.27×1014 m2 × 1370 W/m2 × 86400 s/day = 5.5×1024 J
^ abc "Ask Us: Sun: Amount of Energy the Earth Gets from the Sun". Cosmicopia. NASA. Retrieved 4 November 2011.
^ Lii, Jiangning. "Seismic effects of the Caloris basin impact, Mercury" (PDF). MIT.
^ "Moon Fact Sheet". NASA. Retrieved 16 December 2011.
^ Calculated: KE = 1/2 × m × v2. v = 1.023×103 m/s. m = 7.349×1022 kg. KE = 1/2 × (7.349×1022 kg) × (1.023×103 m/s)2 = 3.845×1028 J.
^ "Moment of Inertia—Earth". Eric Weisstein's World of Physics. Retrieved 5 November 2011.
^ Allain, Rhett. "Rotational energy of the Earth as an energy source". .dotphysics. Science Blogs. Archived from the original on 17 November 2011. Retrieved 5 November 2011.the Earth takes 23.9345 hours to rotate
^ Calculated: E_rotational = 1/2 × I × w2 = 1/2 × (8.0×1037 kg m2) × (2×pi/(23.9345 hour period × 3600 seconds/hour))2 = 2.1×1029 J
^ Calculated: 3.8×1026 J/s × 86400 s/day = 3.3×1031 J
^ "Earth's Gravitational Binding Energy". Retrieved 19 March 2012.Variable Density Method: the Earth's gravitational binding energy is −1.711×1032 J
^ "DutchS/pseudosc/flipaxis". uwgb.edu. Archived from the original on 22 August 2017. Retrieved 26 December 2016.
^ Calculated: 3.8×1026 J/s × 86400 s/day × 365.25 days/year = 1.2×1034 J
^ U=(3/5)GM2r{displaystyle U={frac {(3/5)GM^{2}}{r}}}
Chandrasekhar, S. 1939, An Introduction to the Study of Stellar Structure (Chicago: U. of Chicago; reprinted in New York: Dover), section 9, eqs. 90–92, p. 51 (Dover edition)
Lang, K. R. 1980, Astrophysical Formulae (Berlin: Springer Verlag), p. 272
^ "Earth: Facts & Figures". Solar System Exploration. NASA. Retrieved 29 September 2011.
^ "Conversion from kg to J". NIST. Retrieved 4 November 2011.
^ Frail, D. A.; Kulkarni, S. R.; Sari, R.; Djorgovski, S. G.; Bloom, J. S.; Galama, T. J.; Reichart, D. E.; Berger, E.; Harrison, F. A.; Price, P. A.; Yost, S. A.; Diercks, A.; Goodrich, R. W.; Chaffee, F. (2001). "Beaming in Gamma-Ray Bursts: Evidence for a Standard Energy Reservoir". The Astrophysical Journal. 562 (1): L55. arXiv:astro-ph/0102282. Bibcode:2001ApJ...562L..55F. doi:10.1086/338119. "the gamma-ray energy release, corrected for geometry, is narrowly clustered around 5 × 1050 erg"
^ Calculated: 5×1050 erg × 1×10−7 J/erg = 5×1043 J
^ Khokhlov, A.; Mueller, E.; Hoeflich, P.; Mueller; Hoeflich (1993). "Light curves of Type IA supernova models with different explosion mechanisms". Astronomy and Astrophysics. 270 (1–2): 223–248. Bibcode:1993A&A...270..223K.CS1 maint: Multiple names: authors list (link)
^ Dong, S.; Shappee, B. J.; Prieto, J. L.; Jha, S. W.; Stanek, K. Z.; Holoien, T. W.- S.; Kochanek, C. S.; Thompson, T. A.; Morrell, N.; Thompson, I. B.; et al. (15 January 2016). "ASASSN-15lh: A highly super-luminous supernova". Science. 351 (6270): 257–260. arXiv:1507.03010. Bibcode:2016Sci...351..257D. doi:10.1126/science.aac9613. PMID 26816375.
^ McBreen, S; Krühler, T; Rau, A; Greiner, J; Kann, D. A; Savaglio, S; Afonso, P; Clemens, C; Filgas, R; Klose, S; Küpüc Yoldas, A; Olivares E, F; Rossi, A; Szokoly, G. P; Updike, A; Yoldas, A (2010). "Optical and near-infrared follow-up observations of four Fermi/LAT GRBs: Redshifts, afterglows, energetics and host galaxies". Astronomy and Astrophysics. 516 (71): A71. arXiv:1003.3885. Bibcode:2010A&A...516A..71M. doi:10.1051/0004-6361/200913734.
^ Cenko, S. B; Frail, D. A; Harrison, F. A; Haislip, J. B; Reichart, D. E; Butler, N. R; Cobb, B. E; Cucchiara, A; Berger, E; Bloom, J. S; Chandra, P; Fox, D. B; Perley, D. A; Prochaska, J. X; Filippenko, A. V; Glazebrook, K; Ivarsen, K. M; Kasliwal, M. M; Kulkarni, S. R; LaCluyze, A. P; Lopez, S; Morgan, A. N; Pettini, M; Rana, V. R (2010). "Afterglow Observations of Fermi-LAT Gamma-Ray Bursts and the Emerging Class of Hyper-Energetic Events". The Astrophysical Journal. 732 (1): 29. arXiv:1004.2900. Bibcode:2011ApJ...732...29C. doi:10.1088/0004-637X/732/1/29.
^ Cenko, S. B; Frail, D. A; Harrison, F. A; Kulkarni, S. R; Nakar, E; Chandra, P; Butler, N. R; Fox, D. B; Gal-Yam, A; Kasliwal, M. M; Kelemen, J; Moon, D. -S; Price, P. A; Rau, A; Soderberg, A. M; Teplitz, H. I; Werner, M. W; Bock, D. C. -J; Bloom, J. S; Starr, D. A; Filippenko, A. V; Chevalier, R. A; Gehrels, N; Nousek, J. N; Piran, T; Piran, T (2010). "The Collimation and Energetics of the Brightest Swift Gamma-Ray Bursts". The Astrophysical Journal. 711 (2): 641–654. arXiv:0905.0690. Bibcode:2010ApJ...711..641C. doi:10.1088/0004-637X/711/2/641.
^ url= http://tsvi.phys.huji.ac.il/presentations/Frail_AstroExtreme.pdf Archived 1 August 2014 at the Wayback Machine
^ url= http://fermi.gsfc.nasa.gov/science/mtgs/grb2010/tue/Dale_Frail.ppt
^ "A Hypernova: The Super-charged Supernova and its link to Gamma-Ray Bursts". Imagine the Universe!. NASA. Retrieved 9 December 2011.With a power about 100 times that of the already astonishingly powerful "typical" supernova
^ "Sun Fact Sheet". NASA. Retrieved 15 October 2011.
^ "Conversion from kg to J". NIST. Retrieved 4 November 2011.
^ Abbott, B.; et al. (2016). "Observation of Gravitational Waves from a Binary Black Hole Merger". Physical Review Letters. 116 (6): 061102. arXiv:1602.03837. Bibcode:2016PhRvL.116f1102A. doi:10.1103/PhysRevLett.116.061102. PMID 26918975.
^ "Fermi's record breaking gamma-ray burst".
^ Cavagnolo, K. W; McNamara, B. R; Wise, M. W; Nulsen, P. E. J; Brüggen, M; Gitti, M; Rafferty, D. A (2011). "A Powerful AGN Outburst in RBS 797". The Astrophysical Journal. 732 (2): 71. arXiv:1103.0630. Bibcode:2011ApJ...732...71C. doi:10.1088/0004-637X/732/2/71.
^ url= http://iopscience.iop.org/1538-4357/625/1/L9/fulltext/19121.text.html
^ Jim Brau. "The Milky Way Galaxy". Retrieved 4 November 2011.
^ "Conversion from kg to J". NIST. Retrieved 4 November 2011.
^ Karachentsev, I. D.; Kashibadze, O. G. (2006). "Masses of the local group and of the M81 group estimated from distortions in the local velocity field". Astrophysics. 49 (1): 3–18. Bibcode:2006Ap.....49....3K. doi:10.1007/s10511-006-0002-6.
^ "Conversion from kg to J". NIST. Retrieved 4 November 2011.
^ Einasto, M.; et al. (December 2007). "The richest superclusters. I. Morphology". Astronomy and Astrophysics. 476 (2): 697–711. arXiv:0706.1122. Bibcode:2007A&A...476..697E. doi:10.1051/0004-6361:20078037.
^ "Big Bang Energy". Archived from the original on 19 August 2014. Retrieved 26 December 2016.CS1 maint: BOT: original-url status unknown (link)