CUDA_ERROR_ILLEGAL_ADDRESS when runnin Faster R-CNN on Matlab
up vote
0
down vote
favorite
I'm running faster R-CNN in matlab 2018b
on a Windows 10. I face an exception CUDA_ERROR_ILLEGAL_ADDRESS
when I increase the number of my training items or when I increase the MaxEpoch
.
Below are the information of my gpuDevice
CUDADevice with properties:
Name: 'GeForce GTX 1050'
Index: 1
ComputeCapability: '6.1'
SupportsDouble: 1
DriverVersion: 9.2000
ToolkitVersion: 9.1000
MaxThreadsPerBlock: 1024
MaxShmemPerBlock: 49152
MaxThreadBlockSize: [1024 1024 64]
MaxGridSize: [2.1475e+09 65535 65535]
SIMDWidth: 32
TotalMemory: 4.2950e+09
AvailableMemory: 3.4635e+09
MultiprocessorCount: 5
ClockRateKHz: 1493000
ComputeMode: 'Default'
GPUOverlapsTransfers: 1
KernelExecutionTimeout: 1
CanMapHostMemory: 1
DeviceSupported: 1
DeviceSelected: 1
And this is my code
latest_index =0;
for i=1:6
load (strcat('newDataset', int2str(i), '.mat'));
len =length(vehicleDataset.imageFilename);
for j=1:len
filename = vehicleDataset.imageFilename{j};
latest_index=latest_index+1;
fulldata.imageFilename{latest_index} = filename;
fulldata.vehicle{latest_index} = vehicleDataset.vehicle{j};
end
end
trainingDataTable = table(fulldata.imageFilename', fulldata.vehicle');
trainingDataTable.Properties.VariableNames = {'imageFilename','vehicle'};
data.trainingDataTable = trainingDataTable;
trainingDataTable(1:4,:)
% Split data into a training and test set.
idx = floor(0.6 * height(trainingDataTable));
trainingData = trainingDataTable(1:idx,:);
testData = trainingDataTable(idx:end,:);
% Create image input layer.
inputLayer = imageInputLayer([32 32 3]);
% Define the convolutional layer parameters.
filterSize = [3 3];
numFilters = 64;
% Create the middle layers.
middleLayers = [
convolution2dLayer(filterSize, numFilters, 'Padding', 1)
reluLayer()
convolution2dLayer(filterSize, numFilters, 'Padding', 1)
reluLayer()
maxPooling2dLayer(3, 'Stride',2)
];
finalLayers = [
fullyConnectedLayer(128)
% Add a ReLU non-linearity.
reluLayer()
fullyConnectedLayer(width(trainingDataTable))
% Add the softmax loss layer and classification layer.
softmaxLayer()
classificationLayer()
];
layers = [
inputLayer
middleLayers
finalLayers
];
% Options for step 1.
optionsStage1 = trainingOptions('sgdm', ...
'MaxEpochs', 2, ...
'MiniBatchSize', 1, ...
'InitialLearnRate', 1e-3, ...
'CheckpointPath', tempdir);
% Options for step 2.
optionsStage2 = trainingOptions('sgdm', ...
'MaxEpochs', 2, ...
'MiniBatchSize', 1, ...
'InitialLearnRate', 1e-3, ...
'CheckpointPath', tempdir);
% Options for step 3.
optionsStage3 = trainingOptions('sgdm', ...
'MaxEpochs', 2, ...
'MiniBatchSize', 1, ...
'InitialLearnRate', 1e-3, ...
'CheckpointPath', tempdir);
% Options for step 4.
optionsStage4 = trainingOptions('sgdm', ...
'MaxEpochs', 2, ...
'MiniBatchSize', 1, ...
'InitialLearnRate', 1e-3, ...
'CheckpointPath', tempdir);
options = [
optionsStage1
optionsStage2
optionsStage3
optionsStage4
];
doTrainingAndEval = true;
if doTrainingAndEval
% Set random seed to ensure example training reproducibility.
rng(0);
% Train Faster R-CNN detector. Select a BoxPyramidScale of 1.2 to allow
% for finer resolution for multiscale object detection.
detector = trainFasterRCNNObjectDetector(trainingData, layers, options, ...
'NegativeOverlapRange', [0 0.3], ...
'PositiveOverlapRange', [0.6 1], ...
'BoxPyramidScale', 1.2);
data.detector= detector;
else
% Load pretrained detector for the example.
detector = data.detector;
end
save mix_data data
if doTrainingAndEval
% Run detector on each image in the test set and collect results.
resultsStruct = struct();
for i = 1:height(testData)
% Read the image.
I = imread(testData.imageFilename{i});
% Run the detector.
[bboxes, scores, labels] = detect(detector, I);
% Collect the results.
resultsStruct(i).Boxes = bboxes;
resultsStruct(i).Scores = scores;
resultsStruct(i).Labels = labels;
end
% Convert the results into a table.
results = struct2table(resultsStruct);
data.results = results;
save mix_data data
else
% Load results from disk.
results = data.results;
end
% Extract expected bounding box locations from test data.
expectedResults = testData(:, 2:end);
% Evaluate the object detector using Average Precision metric.
[ap, recall, precision] = evaluateDetectionPrecision(results, expectedResults);
% Plot precision/recall curve
figure
plot(recall,precision)
xlabel('Recall')
ylabel('Precision')
grid on
title(sprintf('Average Precision = %.2f', ap))
First it prints the warning multiple time and throws the below exception
Warning: An unexpected error occurred during CUDA execution. The CUDA error was:
CUDA_ERROR_ILLEGAL_ADDRESS
In trainFasterRCNNObjectDetector (line 320)
In rcnn_trail (line 184)
Error using -
An unexpected error occurred during CUDA execution. The CUDA error was:
CUDA_ERROR_ILLEGAL_ADDRESS
Error in vision.internal.cnn.layer.SmoothL1Loss/backwardLoss (line 156)
idx = (X > -one) & (X < one);
Error in nnet.internal.cnn.DAGNetwork/computeGradientsForTraining/efficientBackProp (line 585)
dLossdX = thisLayer.backwardLoss( ...
Error in nnet.internal.cnn.DAGNetwork>@()efficientBackProp(i) (line 661)
@() efficientBackProp(i), ...
Error in nnet.internal.cnn.util.executeWithStagedGPUOOMRecovery (line 11)
[ varargout{1:nOutputs} ] = computeFun();
Error in nnet.internal.cnn.DAGNetwork>iExecuteWithStagedGPUOOMRecovery (line 1195)
[varargout{1:nargout}] = nnet.internal.cnn.util.executeWithStagedGPUOOMRecovery(varargin{:});
Error in nnet.internal.cnn.DAGNetwork/computeGradientsForTraining (line 660)
theseGradients = iExecuteWithStagedGPUOOMRecovery( ...
Error in nnet.internal.cnn.Trainer/computeGradients (line 184)
[gradients, predictions, states] = net.computeGradientsForTraining(X, Y,
needsStatefulTraining, propagateState);
Error in nnet.internal.cnn.Trainer/train (line 85)
[gradients, predictions, states] = this.computeGradients(net, X, response,
needsStatefulTraining, propagateState);
Error in vision.internal.cnn.trainNetwork (line 47)
trainedNet = trainer.train(trainedNet, trainingDispatcher);
Error in fastRCNNObjectDetector.train (line 190)
[network, info] = vision.internal.cnn.trainNetwork(ds, lgraph, opts, mapping,
checkpointSaver);
Error in trainFasterRCNNObjectDetector (line 410)
[stage2Detector, fastRCNN, ~, info(2)] = fastRCNNObjectDetector.train(trainingData, fastRCNN,
options(2), iStageTwoParams(params), checkpointSaver);
Error in rcnn_trail (line 184)
detector = trainFasterRCNNObjectDetector(trainingData, layers, options, ...
matlab deep-learning
This question has an open bounty worth +50
reputation from GeeKh ending in 9 hours.
The current answer(s) are out-of-date and require revision given recent changes.
The answer needs to be specific to matlab 2018b as I’m aware of the solutions for matlab 2016 and have applied it
add a comment |
up vote
0
down vote
favorite
I'm running faster R-CNN in matlab 2018b
on a Windows 10. I face an exception CUDA_ERROR_ILLEGAL_ADDRESS
when I increase the number of my training items or when I increase the MaxEpoch
.
Below are the information of my gpuDevice
CUDADevice with properties:
Name: 'GeForce GTX 1050'
Index: 1
ComputeCapability: '6.1'
SupportsDouble: 1
DriverVersion: 9.2000
ToolkitVersion: 9.1000
MaxThreadsPerBlock: 1024
MaxShmemPerBlock: 49152
MaxThreadBlockSize: [1024 1024 64]
MaxGridSize: [2.1475e+09 65535 65535]
SIMDWidth: 32
TotalMemory: 4.2950e+09
AvailableMemory: 3.4635e+09
MultiprocessorCount: 5
ClockRateKHz: 1493000
ComputeMode: 'Default'
GPUOverlapsTransfers: 1
KernelExecutionTimeout: 1
CanMapHostMemory: 1
DeviceSupported: 1
DeviceSelected: 1
And this is my code
latest_index =0;
for i=1:6
load (strcat('newDataset', int2str(i), '.mat'));
len =length(vehicleDataset.imageFilename);
for j=1:len
filename = vehicleDataset.imageFilename{j};
latest_index=latest_index+1;
fulldata.imageFilename{latest_index} = filename;
fulldata.vehicle{latest_index} = vehicleDataset.vehicle{j};
end
end
trainingDataTable = table(fulldata.imageFilename', fulldata.vehicle');
trainingDataTable.Properties.VariableNames = {'imageFilename','vehicle'};
data.trainingDataTable = trainingDataTable;
trainingDataTable(1:4,:)
% Split data into a training and test set.
idx = floor(0.6 * height(trainingDataTable));
trainingData = trainingDataTable(1:idx,:);
testData = trainingDataTable(idx:end,:);
% Create image input layer.
inputLayer = imageInputLayer([32 32 3]);
% Define the convolutional layer parameters.
filterSize = [3 3];
numFilters = 64;
% Create the middle layers.
middleLayers = [
convolution2dLayer(filterSize, numFilters, 'Padding', 1)
reluLayer()
convolution2dLayer(filterSize, numFilters, 'Padding', 1)
reluLayer()
maxPooling2dLayer(3, 'Stride',2)
];
finalLayers = [
fullyConnectedLayer(128)
% Add a ReLU non-linearity.
reluLayer()
fullyConnectedLayer(width(trainingDataTable))
% Add the softmax loss layer and classification layer.
softmaxLayer()
classificationLayer()
];
layers = [
inputLayer
middleLayers
finalLayers
];
% Options for step 1.
optionsStage1 = trainingOptions('sgdm', ...
'MaxEpochs', 2, ...
'MiniBatchSize', 1, ...
'InitialLearnRate', 1e-3, ...
'CheckpointPath', tempdir);
% Options for step 2.
optionsStage2 = trainingOptions('sgdm', ...
'MaxEpochs', 2, ...
'MiniBatchSize', 1, ...
'InitialLearnRate', 1e-3, ...
'CheckpointPath', tempdir);
% Options for step 3.
optionsStage3 = trainingOptions('sgdm', ...
'MaxEpochs', 2, ...
'MiniBatchSize', 1, ...
'InitialLearnRate', 1e-3, ...
'CheckpointPath', tempdir);
% Options for step 4.
optionsStage4 = trainingOptions('sgdm', ...
'MaxEpochs', 2, ...
'MiniBatchSize', 1, ...
'InitialLearnRate', 1e-3, ...
'CheckpointPath', tempdir);
options = [
optionsStage1
optionsStage2
optionsStage3
optionsStage4
];
doTrainingAndEval = true;
if doTrainingAndEval
% Set random seed to ensure example training reproducibility.
rng(0);
% Train Faster R-CNN detector. Select a BoxPyramidScale of 1.2 to allow
% for finer resolution for multiscale object detection.
detector = trainFasterRCNNObjectDetector(trainingData, layers, options, ...
'NegativeOverlapRange', [0 0.3], ...
'PositiveOverlapRange', [0.6 1], ...
'BoxPyramidScale', 1.2);
data.detector= detector;
else
% Load pretrained detector for the example.
detector = data.detector;
end
save mix_data data
if doTrainingAndEval
% Run detector on each image in the test set and collect results.
resultsStruct = struct();
for i = 1:height(testData)
% Read the image.
I = imread(testData.imageFilename{i});
% Run the detector.
[bboxes, scores, labels] = detect(detector, I);
% Collect the results.
resultsStruct(i).Boxes = bboxes;
resultsStruct(i).Scores = scores;
resultsStruct(i).Labels = labels;
end
% Convert the results into a table.
results = struct2table(resultsStruct);
data.results = results;
save mix_data data
else
% Load results from disk.
results = data.results;
end
% Extract expected bounding box locations from test data.
expectedResults = testData(:, 2:end);
% Evaluate the object detector using Average Precision metric.
[ap, recall, precision] = evaluateDetectionPrecision(results, expectedResults);
% Plot precision/recall curve
figure
plot(recall,precision)
xlabel('Recall')
ylabel('Precision')
grid on
title(sprintf('Average Precision = %.2f', ap))
First it prints the warning multiple time and throws the below exception
Warning: An unexpected error occurred during CUDA execution. The CUDA error was:
CUDA_ERROR_ILLEGAL_ADDRESS
In trainFasterRCNNObjectDetector (line 320)
In rcnn_trail (line 184)
Error using -
An unexpected error occurred during CUDA execution. The CUDA error was:
CUDA_ERROR_ILLEGAL_ADDRESS
Error in vision.internal.cnn.layer.SmoothL1Loss/backwardLoss (line 156)
idx = (X > -one) & (X < one);
Error in nnet.internal.cnn.DAGNetwork/computeGradientsForTraining/efficientBackProp (line 585)
dLossdX = thisLayer.backwardLoss( ...
Error in nnet.internal.cnn.DAGNetwork>@()efficientBackProp(i) (line 661)
@() efficientBackProp(i), ...
Error in nnet.internal.cnn.util.executeWithStagedGPUOOMRecovery (line 11)
[ varargout{1:nOutputs} ] = computeFun();
Error in nnet.internal.cnn.DAGNetwork>iExecuteWithStagedGPUOOMRecovery (line 1195)
[varargout{1:nargout}] = nnet.internal.cnn.util.executeWithStagedGPUOOMRecovery(varargin{:});
Error in nnet.internal.cnn.DAGNetwork/computeGradientsForTraining (line 660)
theseGradients = iExecuteWithStagedGPUOOMRecovery( ...
Error in nnet.internal.cnn.Trainer/computeGradients (line 184)
[gradients, predictions, states] = net.computeGradientsForTraining(X, Y,
needsStatefulTraining, propagateState);
Error in nnet.internal.cnn.Trainer/train (line 85)
[gradients, predictions, states] = this.computeGradients(net, X, response,
needsStatefulTraining, propagateState);
Error in vision.internal.cnn.trainNetwork (line 47)
trainedNet = trainer.train(trainedNet, trainingDispatcher);
Error in fastRCNNObjectDetector.train (line 190)
[network, info] = vision.internal.cnn.trainNetwork(ds, lgraph, opts, mapping,
checkpointSaver);
Error in trainFasterRCNNObjectDetector (line 410)
[stage2Detector, fastRCNN, ~, info(2)] = fastRCNNObjectDetector.train(trainingData, fastRCNN,
options(2), iStageTwoParams(params), checkpointSaver);
Error in rcnn_trail (line 184)
detector = trainFasterRCNNObjectDetector(trainingData, layers, options, ...
matlab deep-learning
This question has an open bounty worth +50
reputation from GeeKh ending in 9 hours.
The current answer(s) are out-of-date and require revision given recent changes.
The answer needs to be specific to matlab 2018b as I’m aware of the solutions for matlab 2016 and have applied it
add a comment |
up vote
0
down vote
favorite
up vote
0
down vote
favorite
I'm running faster R-CNN in matlab 2018b
on a Windows 10. I face an exception CUDA_ERROR_ILLEGAL_ADDRESS
when I increase the number of my training items or when I increase the MaxEpoch
.
Below are the information of my gpuDevice
CUDADevice with properties:
Name: 'GeForce GTX 1050'
Index: 1
ComputeCapability: '6.1'
SupportsDouble: 1
DriverVersion: 9.2000
ToolkitVersion: 9.1000
MaxThreadsPerBlock: 1024
MaxShmemPerBlock: 49152
MaxThreadBlockSize: [1024 1024 64]
MaxGridSize: [2.1475e+09 65535 65535]
SIMDWidth: 32
TotalMemory: 4.2950e+09
AvailableMemory: 3.4635e+09
MultiprocessorCount: 5
ClockRateKHz: 1493000
ComputeMode: 'Default'
GPUOverlapsTransfers: 1
KernelExecutionTimeout: 1
CanMapHostMemory: 1
DeviceSupported: 1
DeviceSelected: 1
And this is my code
latest_index =0;
for i=1:6
load (strcat('newDataset', int2str(i), '.mat'));
len =length(vehicleDataset.imageFilename);
for j=1:len
filename = vehicleDataset.imageFilename{j};
latest_index=latest_index+1;
fulldata.imageFilename{latest_index} = filename;
fulldata.vehicle{latest_index} = vehicleDataset.vehicle{j};
end
end
trainingDataTable = table(fulldata.imageFilename', fulldata.vehicle');
trainingDataTable.Properties.VariableNames = {'imageFilename','vehicle'};
data.trainingDataTable = trainingDataTable;
trainingDataTable(1:4,:)
% Split data into a training and test set.
idx = floor(0.6 * height(trainingDataTable));
trainingData = trainingDataTable(1:idx,:);
testData = trainingDataTable(idx:end,:);
% Create image input layer.
inputLayer = imageInputLayer([32 32 3]);
% Define the convolutional layer parameters.
filterSize = [3 3];
numFilters = 64;
% Create the middle layers.
middleLayers = [
convolution2dLayer(filterSize, numFilters, 'Padding', 1)
reluLayer()
convolution2dLayer(filterSize, numFilters, 'Padding', 1)
reluLayer()
maxPooling2dLayer(3, 'Stride',2)
];
finalLayers = [
fullyConnectedLayer(128)
% Add a ReLU non-linearity.
reluLayer()
fullyConnectedLayer(width(trainingDataTable))
% Add the softmax loss layer and classification layer.
softmaxLayer()
classificationLayer()
];
layers = [
inputLayer
middleLayers
finalLayers
];
% Options for step 1.
optionsStage1 = trainingOptions('sgdm', ...
'MaxEpochs', 2, ...
'MiniBatchSize', 1, ...
'InitialLearnRate', 1e-3, ...
'CheckpointPath', tempdir);
% Options for step 2.
optionsStage2 = trainingOptions('sgdm', ...
'MaxEpochs', 2, ...
'MiniBatchSize', 1, ...
'InitialLearnRate', 1e-3, ...
'CheckpointPath', tempdir);
% Options for step 3.
optionsStage3 = trainingOptions('sgdm', ...
'MaxEpochs', 2, ...
'MiniBatchSize', 1, ...
'InitialLearnRate', 1e-3, ...
'CheckpointPath', tempdir);
% Options for step 4.
optionsStage4 = trainingOptions('sgdm', ...
'MaxEpochs', 2, ...
'MiniBatchSize', 1, ...
'InitialLearnRate', 1e-3, ...
'CheckpointPath', tempdir);
options = [
optionsStage1
optionsStage2
optionsStage3
optionsStage4
];
doTrainingAndEval = true;
if doTrainingAndEval
% Set random seed to ensure example training reproducibility.
rng(0);
% Train Faster R-CNN detector. Select a BoxPyramidScale of 1.2 to allow
% for finer resolution for multiscale object detection.
detector = trainFasterRCNNObjectDetector(trainingData, layers, options, ...
'NegativeOverlapRange', [0 0.3], ...
'PositiveOverlapRange', [0.6 1], ...
'BoxPyramidScale', 1.2);
data.detector= detector;
else
% Load pretrained detector for the example.
detector = data.detector;
end
save mix_data data
if doTrainingAndEval
% Run detector on each image in the test set and collect results.
resultsStruct = struct();
for i = 1:height(testData)
% Read the image.
I = imread(testData.imageFilename{i});
% Run the detector.
[bboxes, scores, labels] = detect(detector, I);
% Collect the results.
resultsStruct(i).Boxes = bboxes;
resultsStruct(i).Scores = scores;
resultsStruct(i).Labels = labels;
end
% Convert the results into a table.
results = struct2table(resultsStruct);
data.results = results;
save mix_data data
else
% Load results from disk.
results = data.results;
end
% Extract expected bounding box locations from test data.
expectedResults = testData(:, 2:end);
% Evaluate the object detector using Average Precision metric.
[ap, recall, precision] = evaluateDetectionPrecision(results, expectedResults);
% Plot precision/recall curve
figure
plot(recall,precision)
xlabel('Recall')
ylabel('Precision')
grid on
title(sprintf('Average Precision = %.2f', ap))
First it prints the warning multiple time and throws the below exception
Warning: An unexpected error occurred during CUDA execution. The CUDA error was:
CUDA_ERROR_ILLEGAL_ADDRESS
In trainFasterRCNNObjectDetector (line 320)
In rcnn_trail (line 184)
Error using -
An unexpected error occurred during CUDA execution. The CUDA error was:
CUDA_ERROR_ILLEGAL_ADDRESS
Error in vision.internal.cnn.layer.SmoothL1Loss/backwardLoss (line 156)
idx = (X > -one) & (X < one);
Error in nnet.internal.cnn.DAGNetwork/computeGradientsForTraining/efficientBackProp (line 585)
dLossdX = thisLayer.backwardLoss( ...
Error in nnet.internal.cnn.DAGNetwork>@()efficientBackProp(i) (line 661)
@() efficientBackProp(i), ...
Error in nnet.internal.cnn.util.executeWithStagedGPUOOMRecovery (line 11)
[ varargout{1:nOutputs} ] = computeFun();
Error in nnet.internal.cnn.DAGNetwork>iExecuteWithStagedGPUOOMRecovery (line 1195)
[varargout{1:nargout}] = nnet.internal.cnn.util.executeWithStagedGPUOOMRecovery(varargin{:});
Error in nnet.internal.cnn.DAGNetwork/computeGradientsForTraining (line 660)
theseGradients = iExecuteWithStagedGPUOOMRecovery( ...
Error in nnet.internal.cnn.Trainer/computeGradients (line 184)
[gradients, predictions, states] = net.computeGradientsForTraining(X, Y,
needsStatefulTraining, propagateState);
Error in nnet.internal.cnn.Trainer/train (line 85)
[gradients, predictions, states] = this.computeGradients(net, X, response,
needsStatefulTraining, propagateState);
Error in vision.internal.cnn.trainNetwork (line 47)
trainedNet = trainer.train(trainedNet, trainingDispatcher);
Error in fastRCNNObjectDetector.train (line 190)
[network, info] = vision.internal.cnn.trainNetwork(ds, lgraph, opts, mapping,
checkpointSaver);
Error in trainFasterRCNNObjectDetector (line 410)
[stage2Detector, fastRCNN, ~, info(2)] = fastRCNNObjectDetector.train(trainingData, fastRCNN,
options(2), iStageTwoParams(params), checkpointSaver);
Error in rcnn_trail (line 184)
detector = trainFasterRCNNObjectDetector(trainingData, layers, options, ...
matlab deep-learning
I'm running faster R-CNN in matlab 2018b
on a Windows 10. I face an exception CUDA_ERROR_ILLEGAL_ADDRESS
when I increase the number of my training items or when I increase the MaxEpoch
.
Below are the information of my gpuDevice
CUDADevice with properties:
Name: 'GeForce GTX 1050'
Index: 1
ComputeCapability: '6.1'
SupportsDouble: 1
DriverVersion: 9.2000
ToolkitVersion: 9.1000
MaxThreadsPerBlock: 1024
MaxShmemPerBlock: 49152
MaxThreadBlockSize: [1024 1024 64]
MaxGridSize: [2.1475e+09 65535 65535]
SIMDWidth: 32
TotalMemory: 4.2950e+09
AvailableMemory: 3.4635e+09
MultiprocessorCount: 5
ClockRateKHz: 1493000
ComputeMode: 'Default'
GPUOverlapsTransfers: 1
KernelExecutionTimeout: 1
CanMapHostMemory: 1
DeviceSupported: 1
DeviceSelected: 1
And this is my code
latest_index =0;
for i=1:6
load (strcat('newDataset', int2str(i), '.mat'));
len =length(vehicleDataset.imageFilename);
for j=1:len
filename = vehicleDataset.imageFilename{j};
latest_index=latest_index+1;
fulldata.imageFilename{latest_index} = filename;
fulldata.vehicle{latest_index} = vehicleDataset.vehicle{j};
end
end
trainingDataTable = table(fulldata.imageFilename', fulldata.vehicle');
trainingDataTable.Properties.VariableNames = {'imageFilename','vehicle'};
data.trainingDataTable = trainingDataTable;
trainingDataTable(1:4,:)
% Split data into a training and test set.
idx = floor(0.6 * height(trainingDataTable));
trainingData = trainingDataTable(1:idx,:);
testData = trainingDataTable(idx:end,:);
% Create image input layer.
inputLayer = imageInputLayer([32 32 3]);
% Define the convolutional layer parameters.
filterSize = [3 3];
numFilters = 64;
% Create the middle layers.
middleLayers = [
convolution2dLayer(filterSize, numFilters, 'Padding', 1)
reluLayer()
convolution2dLayer(filterSize, numFilters, 'Padding', 1)
reluLayer()
maxPooling2dLayer(3, 'Stride',2)
];
finalLayers = [
fullyConnectedLayer(128)
% Add a ReLU non-linearity.
reluLayer()
fullyConnectedLayer(width(trainingDataTable))
% Add the softmax loss layer and classification layer.
softmaxLayer()
classificationLayer()
];
layers = [
inputLayer
middleLayers
finalLayers
];
% Options for step 1.
optionsStage1 = trainingOptions('sgdm', ...
'MaxEpochs', 2, ...
'MiniBatchSize', 1, ...
'InitialLearnRate', 1e-3, ...
'CheckpointPath', tempdir);
% Options for step 2.
optionsStage2 = trainingOptions('sgdm', ...
'MaxEpochs', 2, ...
'MiniBatchSize', 1, ...
'InitialLearnRate', 1e-3, ...
'CheckpointPath', tempdir);
% Options for step 3.
optionsStage3 = trainingOptions('sgdm', ...
'MaxEpochs', 2, ...
'MiniBatchSize', 1, ...
'InitialLearnRate', 1e-3, ...
'CheckpointPath', tempdir);
% Options for step 4.
optionsStage4 = trainingOptions('sgdm', ...
'MaxEpochs', 2, ...
'MiniBatchSize', 1, ...
'InitialLearnRate', 1e-3, ...
'CheckpointPath', tempdir);
options = [
optionsStage1
optionsStage2
optionsStage3
optionsStage4
];
doTrainingAndEval = true;
if doTrainingAndEval
% Set random seed to ensure example training reproducibility.
rng(0);
% Train Faster R-CNN detector. Select a BoxPyramidScale of 1.2 to allow
% for finer resolution for multiscale object detection.
detector = trainFasterRCNNObjectDetector(trainingData, layers, options, ...
'NegativeOverlapRange', [0 0.3], ...
'PositiveOverlapRange', [0.6 1], ...
'BoxPyramidScale', 1.2);
data.detector= detector;
else
% Load pretrained detector for the example.
detector = data.detector;
end
save mix_data data
if doTrainingAndEval
% Run detector on each image in the test set and collect results.
resultsStruct = struct();
for i = 1:height(testData)
% Read the image.
I = imread(testData.imageFilename{i});
% Run the detector.
[bboxes, scores, labels] = detect(detector, I);
% Collect the results.
resultsStruct(i).Boxes = bboxes;
resultsStruct(i).Scores = scores;
resultsStruct(i).Labels = labels;
end
% Convert the results into a table.
results = struct2table(resultsStruct);
data.results = results;
save mix_data data
else
% Load results from disk.
results = data.results;
end
% Extract expected bounding box locations from test data.
expectedResults = testData(:, 2:end);
% Evaluate the object detector using Average Precision metric.
[ap, recall, precision] = evaluateDetectionPrecision(results, expectedResults);
% Plot precision/recall curve
figure
plot(recall,precision)
xlabel('Recall')
ylabel('Precision')
grid on
title(sprintf('Average Precision = %.2f', ap))
First it prints the warning multiple time and throws the below exception
Warning: An unexpected error occurred during CUDA execution. The CUDA error was:
CUDA_ERROR_ILLEGAL_ADDRESS
In trainFasterRCNNObjectDetector (line 320)
In rcnn_trail (line 184)
Error using -
An unexpected error occurred during CUDA execution. The CUDA error was:
CUDA_ERROR_ILLEGAL_ADDRESS
Error in vision.internal.cnn.layer.SmoothL1Loss/backwardLoss (line 156)
idx = (X > -one) & (X < one);
Error in nnet.internal.cnn.DAGNetwork/computeGradientsForTraining/efficientBackProp (line 585)
dLossdX = thisLayer.backwardLoss( ...
Error in nnet.internal.cnn.DAGNetwork>@()efficientBackProp(i) (line 661)
@() efficientBackProp(i), ...
Error in nnet.internal.cnn.util.executeWithStagedGPUOOMRecovery (line 11)
[ varargout{1:nOutputs} ] = computeFun();
Error in nnet.internal.cnn.DAGNetwork>iExecuteWithStagedGPUOOMRecovery (line 1195)
[varargout{1:nargout}] = nnet.internal.cnn.util.executeWithStagedGPUOOMRecovery(varargin{:});
Error in nnet.internal.cnn.DAGNetwork/computeGradientsForTraining (line 660)
theseGradients = iExecuteWithStagedGPUOOMRecovery( ...
Error in nnet.internal.cnn.Trainer/computeGradients (line 184)
[gradients, predictions, states] = net.computeGradientsForTraining(X, Y,
needsStatefulTraining, propagateState);
Error in nnet.internal.cnn.Trainer/train (line 85)
[gradients, predictions, states] = this.computeGradients(net, X, response,
needsStatefulTraining, propagateState);
Error in vision.internal.cnn.trainNetwork (line 47)
trainedNet = trainer.train(trainedNet, trainingDispatcher);
Error in fastRCNNObjectDetector.train (line 190)
[network, info] = vision.internal.cnn.trainNetwork(ds, lgraph, opts, mapping,
checkpointSaver);
Error in trainFasterRCNNObjectDetector (line 410)
[stage2Detector, fastRCNN, ~, info(2)] = fastRCNNObjectDetector.train(trainingData, fastRCNN,
options(2), iStageTwoParams(params), checkpointSaver);
Error in rcnn_trail (line 184)
detector = trainFasterRCNNObjectDetector(trainingData, layers, options, ...
matlab deep-learning
matlab deep-learning
edited Nov 11 at 7:39
talonmies
58.8k17126192
58.8k17126192
asked Nov 10 at 22:07
GeeKh
491215
491215
This question has an open bounty worth +50
reputation from GeeKh ending in 9 hours.
The current answer(s) are out-of-date and require revision given recent changes.
The answer needs to be specific to matlab 2018b as I’m aware of the solutions for matlab 2016 and have applied it
This question has an open bounty worth +50
reputation from GeeKh ending in 9 hours.
The current answer(s) are out-of-date and require revision given recent changes.
The answer needs to be specific to matlab 2018b as I’m aware of the solutions for matlab 2016 and have applied it
add a comment |
add a comment |
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53243904%2fcuda-error-illegal-address-when-runnin-faster-r-cnn-on-matlab%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown