Spark No Encoder found for java.io.Serializable in Map[String, java.io.Serializable]












0















I am writing a spark job that the dataset is pretty flexible, it's defined as Dataset[Map[String, java.io.Serializable]].



now the problem start to show up, spark runtime complains about No Encoder found for java.io.Serializable. I've tried kyro serde, still showing the same error message.



the reason why I have to use this weird Dataset type is because I have flexible fields per Row. and the map looks like:



Map(
"a" -> 1,
"b" -> "bbb",
"c" -> 0.1,
...
)


is there anyway in Spark to handle this flexible dataset type?



EDIT:
here is the solid code anyone can try.



import org.apache.spark.sql.{Dataset, SparkSession}

object SerdeTest extends App {
val sparkSession: SparkSession = SparkSession
.builder()
.master("local[2]")
.getOrCreate()


import sparkSession.implicits._
val ret: Dataset[Record] = sparkSession.sparkContext.parallelize(0 to 10)
.map(
t => {
val row = (0 to t).map(
i => i -> i.asInstanceOf[Integer]
).toMap

Record(map = row)
}
).toDS()

val repartitioned = ret.repartition(10)


repartitioned.collect.foreach(println)
}

case class Record (
map: Map[Int, java.io.Serializable]
)


the above code will give you error Encoder not found:



Exception in thread "main" java.lang.UnsupportedOperationException: No Encoder found for java.io.Serializable
- map value class: "java.io.Serializable"
- field (class: "scala.collection.immutable.Map", name: "map")









share|improve this question

























  • pls show your code

    – thebluephantom
    Nov 16 '18 at 21:13











  • @thebluephantom added code, can directly run in intelliJ.

    – linehrr
    Nov 17 '18 at 23:14











  • I am not sure I followvwhat the question is answer.

    – thebluephantom
    Nov 18 '18 at 7:51
















0















I am writing a spark job that the dataset is pretty flexible, it's defined as Dataset[Map[String, java.io.Serializable]].



now the problem start to show up, spark runtime complains about No Encoder found for java.io.Serializable. I've tried kyro serde, still showing the same error message.



the reason why I have to use this weird Dataset type is because I have flexible fields per Row. and the map looks like:



Map(
"a" -> 1,
"b" -> "bbb",
"c" -> 0.1,
...
)


is there anyway in Spark to handle this flexible dataset type?



EDIT:
here is the solid code anyone can try.



import org.apache.spark.sql.{Dataset, SparkSession}

object SerdeTest extends App {
val sparkSession: SparkSession = SparkSession
.builder()
.master("local[2]")
.getOrCreate()


import sparkSession.implicits._
val ret: Dataset[Record] = sparkSession.sparkContext.parallelize(0 to 10)
.map(
t => {
val row = (0 to t).map(
i => i -> i.asInstanceOf[Integer]
).toMap

Record(map = row)
}
).toDS()

val repartitioned = ret.repartition(10)


repartitioned.collect.foreach(println)
}

case class Record (
map: Map[Int, java.io.Serializable]
)


the above code will give you error Encoder not found:



Exception in thread "main" java.lang.UnsupportedOperationException: No Encoder found for java.io.Serializable
- map value class: "java.io.Serializable"
- field (class: "scala.collection.immutable.Map", name: "map")









share|improve this question

























  • pls show your code

    – thebluephantom
    Nov 16 '18 at 21:13











  • @thebluephantom added code, can directly run in intelliJ.

    – linehrr
    Nov 17 '18 at 23:14











  • I am not sure I followvwhat the question is answer.

    – thebluephantom
    Nov 18 '18 at 7:51














0












0








0








I am writing a spark job that the dataset is pretty flexible, it's defined as Dataset[Map[String, java.io.Serializable]].



now the problem start to show up, spark runtime complains about No Encoder found for java.io.Serializable. I've tried kyro serde, still showing the same error message.



the reason why I have to use this weird Dataset type is because I have flexible fields per Row. and the map looks like:



Map(
"a" -> 1,
"b" -> "bbb",
"c" -> 0.1,
...
)


is there anyway in Spark to handle this flexible dataset type?



EDIT:
here is the solid code anyone can try.



import org.apache.spark.sql.{Dataset, SparkSession}

object SerdeTest extends App {
val sparkSession: SparkSession = SparkSession
.builder()
.master("local[2]")
.getOrCreate()


import sparkSession.implicits._
val ret: Dataset[Record] = sparkSession.sparkContext.parallelize(0 to 10)
.map(
t => {
val row = (0 to t).map(
i => i -> i.asInstanceOf[Integer]
).toMap

Record(map = row)
}
).toDS()

val repartitioned = ret.repartition(10)


repartitioned.collect.foreach(println)
}

case class Record (
map: Map[Int, java.io.Serializable]
)


the above code will give you error Encoder not found:



Exception in thread "main" java.lang.UnsupportedOperationException: No Encoder found for java.io.Serializable
- map value class: "java.io.Serializable"
- field (class: "scala.collection.immutable.Map", name: "map")









share|improve this question
















I am writing a spark job that the dataset is pretty flexible, it's defined as Dataset[Map[String, java.io.Serializable]].



now the problem start to show up, spark runtime complains about No Encoder found for java.io.Serializable. I've tried kyro serde, still showing the same error message.



the reason why I have to use this weird Dataset type is because I have flexible fields per Row. and the map looks like:



Map(
"a" -> 1,
"b" -> "bbb",
"c" -> 0.1,
...
)


is there anyway in Spark to handle this flexible dataset type?



EDIT:
here is the solid code anyone can try.



import org.apache.spark.sql.{Dataset, SparkSession}

object SerdeTest extends App {
val sparkSession: SparkSession = SparkSession
.builder()
.master("local[2]")
.getOrCreate()


import sparkSession.implicits._
val ret: Dataset[Record] = sparkSession.sparkContext.parallelize(0 to 10)
.map(
t => {
val row = (0 to t).map(
i => i -> i.asInstanceOf[Integer]
).toMap

Record(map = row)
}
).toDS()

val repartitioned = ret.repartition(10)


repartitioned.collect.foreach(println)
}

case class Record (
map: Map[Int, java.io.Serializable]
)


the above code will give you error Encoder not found:



Exception in thread "main" java.lang.UnsupportedOperationException: No Encoder found for java.io.Serializable
- map value class: "java.io.Serializable"
- field (class: "scala.collection.immutable.Map", name: "map")






apache-spark






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited Nov 17 '18 at 23:53







linehrr

















asked Nov 15 '18 at 23:12









linehrrlinehrr

534314




534314













  • pls show your code

    – thebluephantom
    Nov 16 '18 at 21:13











  • @thebluephantom added code, can directly run in intelliJ.

    – linehrr
    Nov 17 '18 at 23:14











  • I am not sure I followvwhat the question is answer.

    – thebluephantom
    Nov 18 '18 at 7:51



















  • pls show your code

    – thebluephantom
    Nov 16 '18 at 21:13











  • @thebluephantom added code, can directly run in intelliJ.

    – linehrr
    Nov 17 '18 at 23:14











  • I am not sure I followvwhat the question is answer.

    – thebluephantom
    Nov 18 '18 at 7:51

















pls show your code

– thebluephantom
Nov 16 '18 at 21:13





pls show your code

– thebluephantom
Nov 16 '18 at 21:13













@thebluephantom added code, can directly run in intelliJ.

– linehrr
Nov 17 '18 at 23:14





@thebluephantom added code, can directly run in intelliJ.

– linehrr
Nov 17 '18 at 23:14













I am not sure I followvwhat the question is answer.

– thebluephantom
Nov 18 '18 at 7:51





I am not sure I followvwhat the question is answer.

– thebluephantom
Nov 18 '18 at 7:51












1 Answer
1






active

oldest

votes


















0














found the answer, one way to solve this is to use Kyro serde framework, code change is very minimum, just need to make an implicit Encoder using Kyro and bring that into the context whenever serialization is needed.



here is the code example I got working(can directly run in IntelliJ or equivalent IDE):



import org.apache.spark.sql._

object SerdeTest extends App {
val sparkSession: SparkSession = SparkSession
.builder()
.master("local[2]")
.getOrCreate()


import sparkSession.implicits._

// here is the place you define your Encoder for your custom object type, like in this case Map[Int, java.io.Serializable]
implicit val myObjEncoder: Encoder[Record] = org.apache.spark.sql.Encoders.kryo[Record]
val ret: Dataset[Record] = sparkSession.sparkContext.parallelize(0 to 10)
.map(
t => {
val row = (0 to t).map(
i => i -> i.asInstanceOf[Integer]
).toMap

Record(map = row)
}
).toDS()

val repartitioned = ret.repartition(10)


repartitioned.collect.foreach(
row => println(row.map)
)
}

case class Record (
map: Map[Int, java.io.Serializable]
)


this code will produce the expected results:



Map(0 -> 0, 5 -> 5, 1 -> 1, 2 -> 2, 3 -> 3, 4 -> 4)
Map(0 -> 0, 1 -> 1, 2 -> 2)
Map(0 -> 0, 5 -> 5, 1 -> 1, 6 -> 6, 2 -> 2, 7 -> 7, 3 -> 3, 4 -> 4)
Map(0 -> 0, 1 -> 1)
Map(0 -> 0, 1 -> 1, 2 -> 2, 3 -> 3, 4 -> 4)
Map(0 -> 0, 1 -> 1, 2 -> 2, 3 -> 3)
Map(0 -> 0)
Map(0 -> 0, 5 -> 5, 1 -> 1, 6 -> 6, 2 -> 2, 3 -> 3, 4 -> 4)
Map(0 -> 0, 5 -> 5, 10 -> 10, 1 -> 1, 6 -> 6, 9 -> 9, 2 -> 2, 7 -> 7, 3 -> 3, 8 -> 8, 4 -> 4)
Map(0 -> 0, 5 -> 5, 1 -> 1, 6 -> 6, 9 -> 9, 2 -> 2, 7 -> 7, 3 -> 3, 8 -> 8, 4 -> 4)
Map(0 -> 0, 5 -> 5, 1 -> 1, 6 -> 6, 2 -> 2, 7 -> 7, 3 -> 3, 8 -> 8, 4 -> 4)





share|improve this answer

























    Your Answer






    StackExchange.ifUsing("editor", function () {
    StackExchange.using("externalEditor", function () {
    StackExchange.using("snippets", function () {
    StackExchange.snippets.init();
    });
    });
    }, "code-snippets");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "1"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53329178%2fspark-no-encoder-found-for-java-io-serializable-in-mapstring-java-io-serializa%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    0














    found the answer, one way to solve this is to use Kyro serde framework, code change is very minimum, just need to make an implicit Encoder using Kyro and bring that into the context whenever serialization is needed.



    here is the code example I got working(can directly run in IntelliJ or equivalent IDE):



    import org.apache.spark.sql._

    object SerdeTest extends App {
    val sparkSession: SparkSession = SparkSession
    .builder()
    .master("local[2]")
    .getOrCreate()


    import sparkSession.implicits._

    // here is the place you define your Encoder for your custom object type, like in this case Map[Int, java.io.Serializable]
    implicit val myObjEncoder: Encoder[Record] = org.apache.spark.sql.Encoders.kryo[Record]
    val ret: Dataset[Record] = sparkSession.sparkContext.parallelize(0 to 10)
    .map(
    t => {
    val row = (0 to t).map(
    i => i -> i.asInstanceOf[Integer]
    ).toMap

    Record(map = row)
    }
    ).toDS()

    val repartitioned = ret.repartition(10)


    repartitioned.collect.foreach(
    row => println(row.map)
    )
    }

    case class Record (
    map: Map[Int, java.io.Serializable]
    )


    this code will produce the expected results:



    Map(0 -> 0, 5 -> 5, 1 -> 1, 2 -> 2, 3 -> 3, 4 -> 4)
    Map(0 -> 0, 1 -> 1, 2 -> 2)
    Map(0 -> 0, 5 -> 5, 1 -> 1, 6 -> 6, 2 -> 2, 7 -> 7, 3 -> 3, 4 -> 4)
    Map(0 -> 0, 1 -> 1)
    Map(0 -> 0, 1 -> 1, 2 -> 2, 3 -> 3, 4 -> 4)
    Map(0 -> 0, 1 -> 1, 2 -> 2, 3 -> 3)
    Map(0 -> 0)
    Map(0 -> 0, 5 -> 5, 1 -> 1, 6 -> 6, 2 -> 2, 3 -> 3, 4 -> 4)
    Map(0 -> 0, 5 -> 5, 10 -> 10, 1 -> 1, 6 -> 6, 9 -> 9, 2 -> 2, 7 -> 7, 3 -> 3, 8 -> 8, 4 -> 4)
    Map(0 -> 0, 5 -> 5, 1 -> 1, 6 -> 6, 9 -> 9, 2 -> 2, 7 -> 7, 3 -> 3, 8 -> 8, 4 -> 4)
    Map(0 -> 0, 5 -> 5, 1 -> 1, 6 -> 6, 2 -> 2, 7 -> 7, 3 -> 3, 8 -> 8, 4 -> 4)





    share|improve this answer






























      0














      found the answer, one way to solve this is to use Kyro serde framework, code change is very minimum, just need to make an implicit Encoder using Kyro and bring that into the context whenever serialization is needed.



      here is the code example I got working(can directly run in IntelliJ or equivalent IDE):



      import org.apache.spark.sql._

      object SerdeTest extends App {
      val sparkSession: SparkSession = SparkSession
      .builder()
      .master("local[2]")
      .getOrCreate()


      import sparkSession.implicits._

      // here is the place you define your Encoder for your custom object type, like in this case Map[Int, java.io.Serializable]
      implicit val myObjEncoder: Encoder[Record] = org.apache.spark.sql.Encoders.kryo[Record]
      val ret: Dataset[Record] = sparkSession.sparkContext.parallelize(0 to 10)
      .map(
      t => {
      val row = (0 to t).map(
      i => i -> i.asInstanceOf[Integer]
      ).toMap

      Record(map = row)
      }
      ).toDS()

      val repartitioned = ret.repartition(10)


      repartitioned.collect.foreach(
      row => println(row.map)
      )
      }

      case class Record (
      map: Map[Int, java.io.Serializable]
      )


      this code will produce the expected results:



      Map(0 -> 0, 5 -> 5, 1 -> 1, 2 -> 2, 3 -> 3, 4 -> 4)
      Map(0 -> 0, 1 -> 1, 2 -> 2)
      Map(0 -> 0, 5 -> 5, 1 -> 1, 6 -> 6, 2 -> 2, 7 -> 7, 3 -> 3, 4 -> 4)
      Map(0 -> 0, 1 -> 1)
      Map(0 -> 0, 1 -> 1, 2 -> 2, 3 -> 3, 4 -> 4)
      Map(0 -> 0, 1 -> 1, 2 -> 2, 3 -> 3)
      Map(0 -> 0)
      Map(0 -> 0, 5 -> 5, 1 -> 1, 6 -> 6, 2 -> 2, 3 -> 3, 4 -> 4)
      Map(0 -> 0, 5 -> 5, 10 -> 10, 1 -> 1, 6 -> 6, 9 -> 9, 2 -> 2, 7 -> 7, 3 -> 3, 8 -> 8, 4 -> 4)
      Map(0 -> 0, 5 -> 5, 1 -> 1, 6 -> 6, 9 -> 9, 2 -> 2, 7 -> 7, 3 -> 3, 8 -> 8, 4 -> 4)
      Map(0 -> 0, 5 -> 5, 1 -> 1, 6 -> 6, 2 -> 2, 7 -> 7, 3 -> 3, 8 -> 8, 4 -> 4)





      share|improve this answer




























        0












        0








        0







        found the answer, one way to solve this is to use Kyro serde framework, code change is very minimum, just need to make an implicit Encoder using Kyro and bring that into the context whenever serialization is needed.



        here is the code example I got working(can directly run in IntelliJ or equivalent IDE):



        import org.apache.spark.sql._

        object SerdeTest extends App {
        val sparkSession: SparkSession = SparkSession
        .builder()
        .master("local[2]")
        .getOrCreate()


        import sparkSession.implicits._

        // here is the place you define your Encoder for your custom object type, like in this case Map[Int, java.io.Serializable]
        implicit val myObjEncoder: Encoder[Record] = org.apache.spark.sql.Encoders.kryo[Record]
        val ret: Dataset[Record] = sparkSession.sparkContext.parallelize(0 to 10)
        .map(
        t => {
        val row = (0 to t).map(
        i => i -> i.asInstanceOf[Integer]
        ).toMap

        Record(map = row)
        }
        ).toDS()

        val repartitioned = ret.repartition(10)


        repartitioned.collect.foreach(
        row => println(row.map)
        )
        }

        case class Record (
        map: Map[Int, java.io.Serializable]
        )


        this code will produce the expected results:



        Map(0 -> 0, 5 -> 5, 1 -> 1, 2 -> 2, 3 -> 3, 4 -> 4)
        Map(0 -> 0, 1 -> 1, 2 -> 2)
        Map(0 -> 0, 5 -> 5, 1 -> 1, 6 -> 6, 2 -> 2, 7 -> 7, 3 -> 3, 4 -> 4)
        Map(0 -> 0, 1 -> 1)
        Map(0 -> 0, 1 -> 1, 2 -> 2, 3 -> 3, 4 -> 4)
        Map(0 -> 0, 1 -> 1, 2 -> 2, 3 -> 3)
        Map(0 -> 0)
        Map(0 -> 0, 5 -> 5, 1 -> 1, 6 -> 6, 2 -> 2, 3 -> 3, 4 -> 4)
        Map(0 -> 0, 5 -> 5, 10 -> 10, 1 -> 1, 6 -> 6, 9 -> 9, 2 -> 2, 7 -> 7, 3 -> 3, 8 -> 8, 4 -> 4)
        Map(0 -> 0, 5 -> 5, 1 -> 1, 6 -> 6, 9 -> 9, 2 -> 2, 7 -> 7, 3 -> 3, 8 -> 8, 4 -> 4)
        Map(0 -> 0, 5 -> 5, 1 -> 1, 6 -> 6, 2 -> 2, 7 -> 7, 3 -> 3, 8 -> 8, 4 -> 4)





        share|improve this answer















        found the answer, one way to solve this is to use Kyro serde framework, code change is very minimum, just need to make an implicit Encoder using Kyro and bring that into the context whenever serialization is needed.



        here is the code example I got working(can directly run in IntelliJ or equivalent IDE):



        import org.apache.spark.sql._

        object SerdeTest extends App {
        val sparkSession: SparkSession = SparkSession
        .builder()
        .master("local[2]")
        .getOrCreate()


        import sparkSession.implicits._

        // here is the place you define your Encoder for your custom object type, like in this case Map[Int, java.io.Serializable]
        implicit val myObjEncoder: Encoder[Record] = org.apache.spark.sql.Encoders.kryo[Record]
        val ret: Dataset[Record] = sparkSession.sparkContext.parallelize(0 to 10)
        .map(
        t => {
        val row = (0 to t).map(
        i => i -> i.asInstanceOf[Integer]
        ).toMap

        Record(map = row)
        }
        ).toDS()

        val repartitioned = ret.repartition(10)


        repartitioned.collect.foreach(
        row => println(row.map)
        )
        }

        case class Record (
        map: Map[Int, java.io.Serializable]
        )


        this code will produce the expected results:



        Map(0 -> 0, 5 -> 5, 1 -> 1, 2 -> 2, 3 -> 3, 4 -> 4)
        Map(0 -> 0, 1 -> 1, 2 -> 2)
        Map(0 -> 0, 5 -> 5, 1 -> 1, 6 -> 6, 2 -> 2, 7 -> 7, 3 -> 3, 4 -> 4)
        Map(0 -> 0, 1 -> 1)
        Map(0 -> 0, 1 -> 1, 2 -> 2, 3 -> 3, 4 -> 4)
        Map(0 -> 0, 1 -> 1, 2 -> 2, 3 -> 3)
        Map(0 -> 0)
        Map(0 -> 0, 5 -> 5, 1 -> 1, 6 -> 6, 2 -> 2, 3 -> 3, 4 -> 4)
        Map(0 -> 0, 5 -> 5, 10 -> 10, 1 -> 1, 6 -> 6, 9 -> 9, 2 -> 2, 7 -> 7, 3 -> 3, 8 -> 8, 4 -> 4)
        Map(0 -> 0, 5 -> 5, 1 -> 1, 6 -> 6, 9 -> 9, 2 -> 2, 7 -> 7, 3 -> 3, 8 -> 8, 4 -> 4)
        Map(0 -> 0, 5 -> 5, 1 -> 1, 6 -> 6, 2 -> 2, 7 -> 7, 3 -> 3, 8 -> 8, 4 -> 4)






        share|improve this answer














        share|improve this answer



        share|improve this answer








        edited Nov 17 '18 at 23:51

























        answered Nov 17 '18 at 23:35









        linehrrlinehrr

        534314




        534314
































            draft saved

            draft discarded




















































            Thanks for contributing an answer to Stack Overflow!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53329178%2fspark-no-encoder-found-for-java-io-serializable-in-mapstring-java-io-serializa%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Bressuire

            Vorschmack

            Quarantine