How to group date-indexed data and extract timeseries information
Working with simplified student sample data that looks like this:
Date | Loc | SID | Test | Score
----------------------------------------------
2018-03-01 L1 S1 T1 3
2018-03-01 L1 S1 T1 5
2018-03-01 L2 S3 T1 3
2018-03-03 L2 S3 T2 4
2018-03-03 L1 S2 T1 1
2018-03-03 L1 S1 T2 5
2018-03-03 L1 S1 T1 4
2018-03-03 L1 S2 T3 7
2018-03-03 L2 S1 T1 5
2018-03-05 L1 S2 T2 3
2018-03-05 L2 S1 T1 1
2018-03-05 L1 S3 T2 5
2018-03-05 L1 S2 T1 8
2018-03-05 L1 S1 T1 6
2018-03-05 L2 S1 T1 3
2018-03-05 L2 S3 T3 5
2018-03-08 L2 S2 T2 4
2018-03-08 L2 S1 T2 2
2018-03-09 L1 S3 T1 6
2018-03-09 L2 S3 T1 5
2018-03-09 L1 S1 T3 8
2018-03-09 L1 S1 T3 6
2018-03-11 L1 S3 T2 6
2018-03-11 L2 S3 T1 9
2018-03-11 L1 S3 T2 3
2018-03-11 L1 S1 T1 5
2018-03-11 L2 S1 T1 4
2018-03-11 L1 S1 T3 9
2018-03-14 L2 S2 T1 3
2018-03-14 L1 S2 T1 3
Would like to groupby (Loc, SID, Test) and calculate the Average Score and Weighted Average Score based on a weekly re-sample so it looks something like the following (not complete, only showing Week 1):
| # Times Test Taken | Avg. Score | Wgtd Avg. Score
------------|------------------------------------------------------
Week 1| L1 S1 T1 | 4 | 4.50 |
T2 | 1 | 5.00 |
S2 T1 | 2 | 4.50 |
T2 | 1 | 3.00 |
T3 | 1 | 7.00 |
S3 T2 | 1 | 5.00 |
L2 S1 T1 | 3 | 3.00 |
S3 T1 | 1 | 4.00
So far I've:
import pandas as pd
df = pd.read_csv(TheData)
df2 = df.copy()
df2.Date = pd.to_datetime(df2.Date)
df2.set_index('Date', inplace=True)
df3 = df2.copy()
df3.groupby(['Loc', 'SID', 'Test']).resample('W')['Score'].count()
# df3.groupby(['Loc', 'SID', 'Test']).resample('W').count()
df3.groupby(['Loc', 'SID', 'Test']).resample('W').mean()
I believe I have the correct info for "# Times Test Taken" and "Average Score". How can I feed this info into new columns into the same dataframe?
For the weighted avg. score, I'm open to suggestions on how to calculate it such that it can reflect differences in Test Type (T1-T3) as it pertains to score. I'm not even sure that I'm even thinking about this metric the right way.
Will continue to update as I make progress. Any feedback is greatly appreciated.
python pandas dataframe time-series weighted-average
add a comment |
Working with simplified student sample data that looks like this:
Date | Loc | SID | Test | Score
----------------------------------------------
2018-03-01 L1 S1 T1 3
2018-03-01 L1 S1 T1 5
2018-03-01 L2 S3 T1 3
2018-03-03 L2 S3 T2 4
2018-03-03 L1 S2 T1 1
2018-03-03 L1 S1 T2 5
2018-03-03 L1 S1 T1 4
2018-03-03 L1 S2 T3 7
2018-03-03 L2 S1 T1 5
2018-03-05 L1 S2 T2 3
2018-03-05 L2 S1 T1 1
2018-03-05 L1 S3 T2 5
2018-03-05 L1 S2 T1 8
2018-03-05 L1 S1 T1 6
2018-03-05 L2 S1 T1 3
2018-03-05 L2 S3 T3 5
2018-03-08 L2 S2 T2 4
2018-03-08 L2 S1 T2 2
2018-03-09 L1 S3 T1 6
2018-03-09 L2 S3 T1 5
2018-03-09 L1 S1 T3 8
2018-03-09 L1 S1 T3 6
2018-03-11 L1 S3 T2 6
2018-03-11 L2 S3 T1 9
2018-03-11 L1 S3 T2 3
2018-03-11 L1 S1 T1 5
2018-03-11 L2 S1 T1 4
2018-03-11 L1 S1 T3 9
2018-03-14 L2 S2 T1 3
2018-03-14 L1 S2 T1 3
Would like to groupby (Loc, SID, Test) and calculate the Average Score and Weighted Average Score based on a weekly re-sample so it looks something like the following (not complete, only showing Week 1):
| # Times Test Taken | Avg. Score | Wgtd Avg. Score
------------|------------------------------------------------------
Week 1| L1 S1 T1 | 4 | 4.50 |
T2 | 1 | 5.00 |
S2 T1 | 2 | 4.50 |
T2 | 1 | 3.00 |
T3 | 1 | 7.00 |
S3 T2 | 1 | 5.00 |
L2 S1 T1 | 3 | 3.00 |
S3 T1 | 1 | 4.00
So far I've:
import pandas as pd
df = pd.read_csv(TheData)
df2 = df.copy()
df2.Date = pd.to_datetime(df2.Date)
df2.set_index('Date', inplace=True)
df3 = df2.copy()
df3.groupby(['Loc', 'SID', 'Test']).resample('W')['Score'].count()
# df3.groupby(['Loc', 'SID', 'Test']).resample('W').count()
df3.groupby(['Loc', 'SID', 'Test']).resample('W').mean()
I believe I have the correct info for "# Times Test Taken" and "Average Score". How can I feed this info into new columns into the same dataframe?
For the weighted avg. score, I'm open to suggestions on how to calculate it such that it can reflect differences in Test Type (T1-T3) as it pertains to score. I'm not even sure that I'm even thinking about this metric the right way.
Will continue to update as I make progress. Any feedback is greatly appreciated.
python pandas dataframe time-series weighted-average
add a comment |
Working with simplified student sample data that looks like this:
Date | Loc | SID | Test | Score
----------------------------------------------
2018-03-01 L1 S1 T1 3
2018-03-01 L1 S1 T1 5
2018-03-01 L2 S3 T1 3
2018-03-03 L2 S3 T2 4
2018-03-03 L1 S2 T1 1
2018-03-03 L1 S1 T2 5
2018-03-03 L1 S1 T1 4
2018-03-03 L1 S2 T3 7
2018-03-03 L2 S1 T1 5
2018-03-05 L1 S2 T2 3
2018-03-05 L2 S1 T1 1
2018-03-05 L1 S3 T2 5
2018-03-05 L1 S2 T1 8
2018-03-05 L1 S1 T1 6
2018-03-05 L2 S1 T1 3
2018-03-05 L2 S3 T3 5
2018-03-08 L2 S2 T2 4
2018-03-08 L2 S1 T2 2
2018-03-09 L1 S3 T1 6
2018-03-09 L2 S3 T1 5
2018-03-09 L1 S1 T3 8
2018-03-09 L1 S1 T3 6
2018-03-11 L1 S3 T2 6
2018-03-11 L2 S3 T1 9
2018-03-11 L1 S3 T2 3
2018-03-11 L1 S1 T1 5
2018-03-11 L2 S1 T1 4
2018-03-11 L1 S1 T3 9
2018-03-14 L2 S2 T1 3
2018-03-14 L1 S2 T1 3
Would like to groupby (Loc, SID, Test) and calculate the Average Score and Weighted Average Score based on a weekly re-sample so it looks something like the following (not complete, only showing Week 1):
| # Times Test Taken | Avg. Score | Wgtd Avg. Score
------------|------------------------------------------------------
Week 1| L1 S1 T1 | 4 | 4.50 |
T2 | 1 | 5.00 |
S2 T1 | 2 | 4.50 |
T2 | 1 | 3.00 |
T3 | 1 | 7.00 |
S3 T2 | 1 | 5.00 |
L2 S1 T1 | 3 | 3.00 |
S3 T1 | 1 | 4.00
So far I've:
import pandas as pd
df = pd.read_csv(TheData)
df2 = df.copy()
df2.Date = pd.to_datetime(df2.Date)
df2.set_index('Date', inplace=True)
df3 = df2.copy()
df3.groupby(['Loc', 'SID', 'Test']).resample('W')['Score'].count()
# df3.groupby(['Loc', 'SID', 'Test']).resample('W').count()
df3.groupby(['Loc', 'SID', 'Test']).resample('W').mean()
I believe I have the correct info for "# Times Test Taken" and "Average Score". How can I feed this info into new columns into the same dataframe?
For the weighted avg. score, I'm open to suggestions on how to calculate it such that it can reflect differences in Test Type (T1-T3) as it pertains to score. I'm not even sure that I'm even thinking about this metric the right way.
Will continue to update as I make progress. Any feedback is greatly appreciated.
python pandas dataframe time-series weighted-average
Working with simplified student sample data that looks like this:
Date | Loc | SID | Test | Score
----------------------------------------------
2018-03-01 L1 S1 T1 3
2018-03-01 L1 S1 T1 5
2018-03-01 L2 S3 T1 3
2018-03-03 L2 S3 T2 4
2018-03-03 L1 S2 T1 1
2018-03-03 L1 S1 T2 5
2018-03-03 L1 S1 T1 4
2018-03-03 L1 S2 T3 7
2018-03-03 L2 S1 T1 5
2018-03-05 L1 S2 T2 3
2018-03-05 L2 S1 T1 1
2018-03-05 L1 S3 T2 5
2018-03-05 L1 S2 T1 8
2018-03-05 L1 S1 T1 6
2018-03-05 L2 S1 T1 3
2018-03-05 L2 S3 T3 5
2018-03-08 L2 S2 T2 4
2018-03-08 L2 S1 T2 2
2018-03-09 L1 S3 T1 6
2018-03-09 L2 S3 T1 5
2018-03-09 L1 S1 T3 8
2018-03-09 L1 S1 T3 6
2018-03-11 L1 S3 T2 6
2018-03-11 L2 S3 T1 9
2018-03-11 L1 S3 T2 3
2018-03-11 L1 S1 T1 5
2018-03-11 L2 S1 T1 4
2018-03-11 L1 S1 T3 9
2018-03-14 L2 S2 T1 3
2018-03-14 L1 S2 T1 3
Would like to groupby (Loc, SID, Test) and calculate the Average Score and Weighted Average Score based on a weekly re-sample so it looks something like the following (not complete, only showing Week 1):
| # Times Test Taken | Avg. Score | Wgtd Avg. Score
------------|------------------------------------------------------
Week 1| L1 S1 T1 | 4 | 4.50 |
T2 | 1 | 5.00 |
S2 T1 | 2 | 4.50 |
T2 | 1 | 3.00 |
T3 | 1 | 7.00 |
S3 T2 | 1 | 5.00 |
L2 S1 T1 | 3 | 3.00 |
S3 T1 | 1 | 4.00
So far I've:
import pandas as pd
df = pd.read_csv(TheData)
df2 = df.copy()
df2.Date = pd.to_datetime(df2.Date)
df2.set_index('Date', inplace=True)
df3 = df2.copy()
df3.groupby(['Loc', 'SID', 'Test']).resample('W')['Score'].count()
# df3.groupby(['Loc', 'SID', 'Test']).resample('W').count()
df3.groupby(['Loc', 'SID', 'Test']).resample('W').mean()
I believe I have the correct info for "# Times Test Taken" and "Average Score". How can I feed this info into new columns into the same dataframe?
For the weighted avg. score, I'm open to suggestions on how to calculate it such that it can reflect differences in Test Type (T1-T3) as it pertains to score. I'm not even sure that I'm even thinking about this metric the right way.
Will continue to update as I make progress. Any feedback is greatly appreciated.
python pandas dataframe time-series weighted-average
python pandas dataframe time-series weighted-average
edited Nov 13 '18 at 6:39
dmitriys
15119
15119
asked Nov 12 '18 at 22:26
jarwal
155
155
add a comment |
add a comment |
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53270995%2fhow-to-group-date-indexed-data-and-extract-timeseries-information%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53270995%2fhow-to-group-date-indexed-data-and-extract-timeseries-information%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown