Change order of appearance of independent variables in regression table using mtable() from the memisc...











up vote
1
down vote

favorite












I use the package memisc for exporting my regression tables to LaTeX. I now have a three model with different independent variables (IV) and various control variables (CV) that are the same in every model.



Using



mtable("Modell 1"=lm(DV ~ IV1 + CV1 + CV2),
"Modell 2"=lm(DV ~ IV2 + CV1 + CV2),
"Modell 3"=lm(DV ~ IV3 + CV1 + CV2))


, I get a this output:



===========================================================================
Modell 1 Modell 2 Modell 3 Modell 4
---------------------------------------------------------------------------
(Intercept) -0.122 -0.112 -0.122 -0.097
(0.116) (0.115) (0.116) (0.116)
IV1 0.026 -0.083
(0.030) (0.064)
CV1 0.017 0.015 0.018 0.012
(0.019) (0.019) (0.019) (0.019)
CV2 0.064*** 0.063*** 0.066*** 0.063***
(0.016) (0.015) (0.016) (0.016)
IV3 0.076 0.196*
(0.045) (0.099)
IV4 -0.016 -0.047
(0.076) (0.078)
---------------------------------------------------------------------------


(I truncated the summary statistics). I would like IV1, IV2 and IV3 to appear first, and afterwards all the control variables. Is there any automatable solution?










share|improve this question
























  • stargazer can be a good option. Do you absolutely want/need to use mtable?
    – ANG
    Nov 9 at 16:01










  • I did all the other table in mtable and like a consistent look (e.g. mtable aligns values by commata), so I want to continue using mtable.
    – Lukas
    Nov 11 at 10:16















up vote
1
down vote

favorite












I use the package memisc for exporting my regression tables to LaTeX. I now have a three model with different independent variables (IV) and various control variables (CV) that are the same in every model.



Using



mtable("Modell 1"=lm(DV ~ IV1 + CV1 + CV2),
"Modell 2"=lm(DV ~ IV2 + CV1 + CV2),
"Modell 3"=lm(DV ~ IV3 + CV1 + CV2))


, I get a this output:



===========================================================================
Modell 1 Modell 2 Modell 3 Modell 4
---------------------------------------------------------------------------
(Intercept) -0.122 -0.112 -0.122 -0.097
(0.116) (0.115) (0.116) (0.116)
IV1 0.026 -0.083
(0.030) (0.064)
CV1 0.017 0.015 0.018 0.012
(0.019) (0.019) (0.019) (0.019)
CV2 0.064*** 0.063*** 0.066*** 0.063***
(0.016) (0.015) (0.016) (0.016)
IV3 0.076 0.196*
(0.045) (0.099)
IV4 -0.016 -0.047
(0.076) (0.078)
---------------------------------------------------------------------------


(I truncated the summary statistics). I would like IV1, IV2 and IV3 to appear first, and afterwards all the control variables. Is there any automatable solution?










share|improve this question
























  • stargazer can be a good option. Do you absolutely want/need to use mtable?
    – ANG
    Nov 9 at 16:01










  • I did all the other table in mtable and like a consistent look (e.g. mtable aligns values by commata), so I want to continue using mtable.
    – Lukas
    Nov 11 at 10:16













up vote
1
down vote

favorite









up vote
1
down vote

favorite











I use the package memisc for exporting my regression tables to LaTeX. I now have a three model with different independent variables (IV) and various control variables (CV) that are the same in every model.



Using



mtable("Modell 1"=lm(DV ~ IV1 + CV1 + CV2),
"Modell 2"=lm(DV ~ IV2 + CV1 + CV2),
"Modell 3"=lm(DV ~ IV3 + CV1 + CV2))


, I get a this output:



===========================================================================
Modell 1 Modell 2 Modell 3 Modell 4
---------------------------------------------------------------------------
(Intercept) -0.122 -0.112 -0.122 -0.097
(0.116) (0.115) (0.116) (0.116)
IV1 0.026 -0.083
(0.030) (0.064)
CV1 0.017 0.015 0.018 0.012
(0.019) (0.019) (0.019) (0.019)
CV2 0.064*** 0.063*** 0.066*** 0.063***
(0.016) (0.015) (0.016) (0.016)
IV3 0.076 0.196*
(0.045) (0.099)
IV4 -0.016 -0.047
(0.076) (0.078)
---------------------------------------------------------------------------


(I truncated the summary statistics). I would like IV1, IV2 and IV3 to appear first, and afterwards all the control variables. Is there any automatable solution?










share|improve this question















I use the package memisc for exporting my regression tables to LaTeX. I now have a three model with different independent variables (IV) and various control variables (CV) that are the same in every model.



Using



mtable("Modell 1"=lm(DV ~ IV1 + CV1 + CV2),
"Modell 2"=lm(DV ~ IV2 + CV1 + CV2),
"Modell 3"=lm(DV ~ IV3 + CV1 + CV2))


, I get a this output:



===========================================================================
Modell 1 Modell 2 Modell 3 Modell 4
---------------------------------------------------------------------------
(Intercept) -0.122 -0.112 -0.122 -0.097
(0.116) (0.115) (0.116) (0.116)
IV1 0.026 -0.083
(0.030) (0.064)
CV1 0.017 0.015 0.018 0.012
(0.019) (0.019) (0.019) (0.019)
CV2 0.064*** 0.063*** 0.066*** 0.063***
(0.016) (0.015) (0.016) (0.016)
IV3 0.076 0.196*
(0.045) (0.099)
IV4 -0.016 -0.047
(0.076) (0.078)
---------------------------------------------------------------------------


(I truncated the summary statistics). I would like IV1, IV2 and IV3 to appear first, and afterwards all the control variables. Is there any automatable solution?







r lm






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited Nov 9 at 16:46









ANG

4,0472620




4,0472620










asked Nov 9 at 14:05









Lukas

5810




5810












  • stargazer can be a good option. Do you absolutely want/need to use mtable?
    – ANG
    Nov 9 at 16:01










  • I did all the other table in mtable and like a consistent look (e.g. mtable aligns values by commata), so I want to continue using mtable.
    – Lukas
    Nov 11 at 10:16


















  • stargazer can be a good option. Do you absolutely want/need to use mtable?
    – ANG
    Nov 9 at 16:01










  • I did all the other table in mtable and like a consistent look (e.g. mtable aligns values by commata), so I want to continue using mtable.
    – Lukas
    Nov 11 at 10:16
















stargazer can be a good option. Do you absolutely want/need to use mtable?
– ANG
Nov 9 at 16:01




stargazer can be a good option. Do you absolutely want/need to use mtable?
– ANG
Nov 9 at 16:01












I did all the other table in mtable and like a consistent look (e.g. mtable aligns values by commata), so I want to continue using mtable.
– Lukas
Nov 11 at 10:16




I did all the other table in mtable and like a consistent look (e.g. mtable aligns values by commata), so I want to continue using mtable.
– Lukas
Nov 11 at 10:16












1 Answer
1






active

oldest

votes

















up vote
1
down vote



accepted










This is an intersiting question. Please, consider the following example.



library(memisc)
# independent variables (IV) are dpi, ddpi, log(dpi) and log(ddpi)
# control variables (CV) are pop15 and pop75
mtable("Model 1" = lm(sr ~ dpi + pop15 + pop75, LifeCycleSavings),
"Model 2" = lm(sr ~ ddpi + pop15 + pop75, LifeCycleSavings),
"Model 3" = lm(sr ~ log(dpi) + pop15 + pop75, LifeCycleSavings),
"Model 4" = lm(sr ~ log(ddpi) + pop15 + pop75, LifeCycleSavings))
# looks like mtable appends new coefficients to the list of coefficients defined in the first model
# output
Calls:
Model 1: lm(formula = sr ~ dpi + pop15 + pop75, data = LifeCycleSavings)
Model 2: lm(formula = sr ~ ddpi + pop15 + pop75, data = LifeCycleSavings)
Model 3: lm(formula = sr ~ log(dpi) + pop15 + pop75, data = LifeCycleSavings)
Model 4: lm(formula = sr ~ log(ddpi) + pop15 + pop75, data = LifeCycleSavings)

=====================================================================
Model 1 Model 2 Model 3 Model 4
---------------------------------------------------------------------
(Intercept) 31.457*** 28.125*** 36.304** 26.118***
(7.482) (7.184) (10.511) (7.416)
dpi -0.001
(0.001)
pop15 -0.492** -0.452** -0.506** -0.408**
(0.149) (0.141) (0.154) (0.144)
pop75 -1.568 -1.835 -1.649 -1.663
(1.121) (0.998) (1.110) (1.009)
ddpi 0.428*
(0.188)
log(dpi) -0.779
(1.018)
log(ddpi) 1.584*
(0.722)
---------------------------------------------------------------------
R-squared 0.274 0.337 0.271 0.332
adj. R-squared 0.227 0.293 0.223 0.288
sigma 3.939 3.767 3.948 3.780
F 5.797 7.778 5.700 7.608
p 0.002 0.000 0.002 0.000
Log-likelihood -137.410 -135.171 -137.525 -135.355
Deviance 713.767 652.606 717.054 657.424
AIC 284.821 280.341 285.050 280.709
BIC 294.381 289.902 294.610 290.269
N 50 50 50 50
=====================================================================


We now want the IV (i.e. dpi, ddpi, log(dpi) and log(ddpi)) to appear first.



Option 1



# we will define a fake model which includes all the IVs
mtables <- mtable("Model fake" = lm(sr ~ dpi + ddpi + log(dpi) + log(ddpi), LifeCycleSavings),
"Model 1" = lm(sr ~ dpi + pop15 + pop75, LifeCycleSavings),
"Model 2" = lm(sr ~ ddpi + pop15 + pop75, LifeCycleSavings),
"Model 3" = lm(sr ~ log(dpi) + pop15 + pop75, LifeCycleSavings),
"Model 4" = lm(sr ~ log(ddpi) + pop15 + pop75, LifeCycleSavings))
# we will display mtables without the fake model
mtables[2:5]
# output
Calls:
Model 1: lm(formula = sr ~ dpi + pop15 + pop75, data = LifeCycleSavings)
Model 2: lm(formula = sr ~ ddpi + pop15 + pop75, data = LifeCycleSavings)
Model 3: lm(formula = sr ~ log(dpi) + pop15 + pop75, data = LifeCycleSavings)
Model 4: lm(formula = sr ~ log(ddpi) + pop15 + pop75, data = LifeCycleSavings)

=====================================================================
Model 1 Model 2 Model 3 Model 4
---------------------------------------------------------------------
(Intercept) 31.457*** 28.125*** 36.304** 26.118***
(7.482) (7.184) (10.511) (7.416)
dpi -0.001
(0.001)
ddpi 0.428*
(0.188)
log(dpi) -0.779
(1.018)
log(ddpi) 1.584*
(0.722)
pop15 -0.492** -0.452** -0.506** -0.408**
(0.149) (0.141) (0.154) (0.144)
pop75 -1.568 -1.835 -1.649 -1.663
(1.121) (0.998) (1.110) (1.009)
---------------------------------------------------------------------
R-squared 0.274 0.337 0.271 0.332
adj. R-squared 0.227 0.293 0.223 0.288
sigma 3.939 3.767 3.948 3.780
F 5.797 7.778 5.700 7.608
p 0.002 0.000 0.002 0.000
Log-likelihood -137.410 -135.171 -137.525 -135.355
Deviance 713.767 652.606 717.054 657.424
AIC 284.821 280.341 285.050 280.709
BIC 294.381 289.902 294.610 290.269
N 50 50 50 50
=====================================================================


Option 2



# stargazer can be an option
library(stargazer)
stargazer(lm(sr ~ dpi + pop15 + pop75, LifeCycleSavings),
lm(sr ~ ddpi + pop15 + pop75, LifeCycleSavings),
lm(sr ~ log(dpi) + pop15 + pop75, LifeCycleSavings),
lm(sr ~ log(ddpi) + pop15 + pop75, LifeCycleSavings),
type = "text", column.labels = c("Model 1", "Model 2", "Model 3", "Model 4"),
model.numbers = FALSE)
# output
=====================================================================
Dependent variable:
---------------------------------------
sr
Model 1 Model 2 Model 3 Model 4
---------------------------------------------------------------------
dpi -0.001
(0.001)

ddpi 0.428**
(0.188)

log(dpi) -0.779
(1.018)

log(ddpi) 1.584**
(0.722)

pop15 -0.492*** -0.452*** -0.506*** -0.408***
(0.149) (0.141) (0.154) (0.144)

pop75 -1.568 -1.835* -1.649 -1.663
(1.121) (0.998) (1.110) (1.009)

Constant 31.457*** 28.125*** 36.304*** 26.118***
(7.482) (7.184) (10.511) (7.416)

---------------------------------------------------------------------
Observations 50 50 50 50
R2 0.274 0.337 0.271 0.332
Adjusted R2 0.227 0.293 0.223 0.288
Residual Std. Error (df = 46) 3.939 3.767 3.948 3.780
F Statistic (df = 3; 46) 5.797*** 7.778*** 5.700*** 7.608***
=====================================================================
Note: *p<0.1; **p<0.05; ***p<0.01


Solution based on your data



mtables <- mtable("Modell 0"=lm(DV ~ IV1 + IV2 + IV3),
"Modell 1"=lm(DV ~ IV1 + CV1 + CV2),
"Modell 2"=lm(DV ~ IV2 + CV1 + CV2),
"Modell 3"=lm(DV ~ IV3 + CV1 + CV2))
mtables[2:4]
# or use stargazer() as above





share|improve this answer























    Your Answer






    StackExchange.ifUsing("editor", function () {
    StackExchange.using("externalEditor", function () {
    StackExchange.using("snippets", function () {
    StackExchange.snippets.init();
    });
    });
    }, "code-snippets");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "1"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














     

    draft saved


    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53227227%2fchange-order-of-appearance-of-independent-variables-in-regression-table-using-mt%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    1
    down vote



    accepted










    This is an intersiting question. Please, consider the following example.



    library(memisc)
    # independent variables (IV) are dpi, ddpi, log(dpi) and log(ddpi)
    # control variables (CV) are pop15 and pop75
    mtable("Model 1" = lm(sr ~ dpi + pop15 + pop75, LifeCycleSavings),
    "Model 2" = lm(sr ~ ddpi + pop15 + pop75, LifeCycleSavings),
    "Model 3" = lm(sr ~ log(dpi) + pop15 + pop75, LifeCycleSavings),
    "Model 4" = lm(sr ~ log(ddpi) + pop15 + pop75, LifeCycleSavings))
    # looks like mtable appends new coefficients to the list of coefficients defined in the first model
    # output
    Calls:
    Model 1: lm(formula = sr ~ dpi + pop15 + pop75, data = LifeCycleSavings)
    Model 2: lm(formula = sr ~ ddpi + pop15 + pop75, data = LifeCycleSavings)
    Model 3: lm(formula = sr ~ log(dpi) + pop15 + pop75, data = LifeCycleSavings)
    Model 4: lm(formula = sr ~ log(ddpi) + pop15 + pop75, data = LifeCycleSavings)

    =====================================================================
    Model 1 Model 2 Model 3 Model 4
    ---------------------------------------------------------------------
    (Intercept) 31.457*** 28.125*** 36.304** 26.118***
    (7.482) (7.184) (10.511) (7.416)
    dpi -0.001
    (0.001)
    pop15 -0.492** -0.452** -0.506** -0.408**
    (0.149) (0.141) (0.154) (0.144)
    pop75 -1.568 -1.835 -1.649 -1.663
    (1.121) (0.998) (1.110) (1.009)
    ddpi 0.428*
    (0.188)
    log(dpi) -0.779
    (1.018)
    log(ddpi) 1.584*
    (0.722)
    ---------------------------------------------------------------------
    R-squared 0.274 0.337 0.271 0.332
    adj. R-squared 0.227 0.293 0.223 0.288
    sigma 3.939 3.767 3.948 3.780
    F 5.797 7.778 5.700 7.608
    p 0.002 0.000 0.002 0.000
    Log-likelihood -137.410 -135.171 -137.525 -135.355
    Deviance 713.767 652.606 717.054 657.424
    AIC 284.821 280.341 285.050 280.709
    BIC 294.381 289.902 294.610 290.269
    N 50 50 50 50
    =====================================================================


    We now want the IV (i.e. dpi, ddpi, log(dpi) and log(ddpi)) to appear first.



    Option 1



    # we will define a fake model which includes all the IVs
    mtables <- mtable("Model fake" = lm(sr ~ dpi + ddpi + log(dpi) + log(ddpi), LifeCycleSavings),
    "Model 1" = lm(sr ~ dpi + pop15 + pop75, LifeCycleSavings),
    "Model 2" = lm(sr ~ ddpi + pop15 + pop75, LifeCycleSavings),
    "Model 3" = lm(sr ~ log(dpi) + pop15 + pop75, LifeCycleSavings),
    "Model 4" = lm(sr ~ log(ddpi) + pop15 + pop75, LifeCycleSavings))
    # we will display mtables without the fake model
    mtables[2:5]
    # output
    Calls:
    Model 1: lm(formula = sr ~ dpi + pop15 + pop75, data = LifeCycleSavings)
    Model 2: lm(formula = sr ~ ddpi + pop15 + pop75, data = LifeCycleSavings)
    Model 3: lm(formula = sr ~ log(dpi) + pop15 + pop75, data = LifeCycleSavings)
    Model 4: lm(formula = sr ~ log(ddpi) + pop15 + pop75, data = LifeCycleSavings)

    =====================================================================
    Model 1 Model 2 Model 3 Model 4
    ---------------------------------------------------------------------
    (Intercept) 31.457*** 28.125*** 36.304** 26.118***
    (7.482) (7.184) (10.511) (7.416)
    dpi -0.001
    (0.001)
    ddpi 0.428*
    (0.188)
    log(dpi) -0.779
    (1.018)
    log(ddpi) 1.584*
    (0.722)
    pop15 -0.492** -0.452** -0.506** -0.408**
    (0.149) (0.141) (0.154) (0.144)
    pop75 -1.568 -1.835 -1.649 -1.663
    (1.121) (0.998) (1.110) (1.009)
    ---------------------------------------------------------------------
    R-squared 0.274 0.337 0.271 0.332
    adj. R-squared 0.227 0.293 0.223 0.288
    sigma 3.939 3.767 3.948 3.780
    F 5.797 7.778 5.700 7.608
    p 0.002 0.000 0.002 0.000
    Log-likelihood -137.410 -135.171 -137.525 -135.355
    Deviance 713.767 652.606 717.054 657.424
    AIC 284.821 280.341 285.050 280.709
    BIC 294.381 289.902 294.610 290.269
    N 50 50 50 50
    =====================================================================


    Option 2



    # stargazer can be an option
    library(stargazer)
    stargazer(lm(sr ~ dpi + pop15 + pop75, LifeCycleSavings),
    lm(sr ~ ddpi + pop15 + pop75, LifeCycleSavings),
    lm(sr ~ log(dpi) + pop15 + pop75, LifeCycleSavings),
    lm(sr ~ log(ddpi) + pop15 + pop75, LifeCycleSavings),
    type = "text", column.labels = c("Model 1", "Model 2", "Model 3", "Model 4"),
    model.numbers = FALSE)
    # output
    =====================================================================
    Dependent variable:
    ---------------------------------------
    sr
    Model 1 Model 2 Model 3 Model 4
    ---------------------------------------------------------------------
    dpi -0.001
    (0.001)

    ddpi 0.428**
    (0.188)

    log(dpi) -0.779
    (1.018)

    log(ddpi) 1.584**
    (0.722)

    pop15 -0.492*** -0.452*** -0.506*** -0.408***
    (0.149) (0.141) (0.154) (0.144)

    pop75 -1.568 -1.835* -1.649 -1.663
    (1.121) (0.998) (1.110) (1.009)

    Constant 31.457*** 28.125*** 36.304*** 26.118***
    (7.482) (7.184) (10.511) (7.416)

    ---------------------------------------------------------------------
    Observations 50 50 50 50
    R2 0.274 0.337 0.271 0.332
    Adjusted R2 0.227 0.293 0.223 0.288
    Residual Std. Error (df = 46) 3.939 3.767 3.948 3.780
    F Statistic (df = 3; 46) 5.797*** 7.778*** 5.700*** 7.608***
    =====================================================================
    Note: *p<0.1; **p<0.05; ***p<0.01


    Solution based on your data



    mtables <- mtable("Modell 0"=lm(DV ~ IV1 + IV2 + IV3),
    "Modell 1"=lm(DV ~ IV1 + CV1 + CV2),
    "Modell 2"=lm(DV ~ IV2 + CV1 + CV2),
    "Modell 3"=lm(DV ~ IV3 + CV1 + CV2))
    mtables[2:4]
    # or use stargazer() as above





    share|improve this answer



























      up vote
      1
      down vote



      accepted










      This is an intersiting question. Please, consider the following example.



      library(memisc)
      # independent variables (IV) are dpi, ddpi, log(dpi) and log(ddpi)
      # control variables (CV) are pop15 and pop75
      mtable("Model 1" = lm(sr ~ dpi + pop15 + pop75, LifeCycleSavings),
      "Model 2" = lm(sr ~ ddpi + pop15 + pop75, LifeCycleSavings),
      "Model 3" = lm(sr ~ log(dpi) + pop15 + pop75, LifeCycleSavings),
      "Model 4" = lm(sr ~ log(ddpi) + pop15 + pop75, LifeCycleSavings))
      # looks like mtable appends new coefficients to the list of coefficients defined in the first model
      # output
      Calls:
      Model 1: lm(formula = sr ~ dpi + pop15 + pop75, data = LifeCycleSavings)
      Model 2: lm(formula = sr ~ ddpi + pop15 + pop75, data = LifeCycleSavings)
      Model 3: lm(formula = sr ~ log(dpi) + pop15 + pop75, data = LifeCycleSavings)
      Model 4: lm(formula = sr ~ log(ddpi) + pop15 + pop75, data = LifeCycleSavings)

      =====================================================================
      Model 1 Model 2 Model 3 Model 4
      ---------------------------------------------------------------------
      (Intercept) 31.457*** 28.125*** 36.304** 26.118***
      (7.482) (7.184) (10.511) (7.416)
      dpi -0.001
      (0.001)
      pop15 -0.492** -0.452** -0.506** -0.408**
      (0.149) (0.141) (0.154) (0.144)
      pop75 -1.568 -1.835 -1.649 -1.663
      (1.121) (0.998) (1.110) (1.009)
      ddpi 0.428*
      (0.188)
      log(dpi) -0.779
      (1.018)
      log(ddpi) 1.584*
      (0.722)
      ---------------------------------------------------------------------
      R-squared 0.274 0.337 0.271 0.332
      adj. R-squared 0.227 0.293 0.223 0.288
      sigma 3.939 3.767 3.948 3.780
      F 5.797 7.778 5.700 7.608
      p 0.002 0.000 0.002 0.000
      Log-likelihood -137.410 -135.171 -137.525 -135.355
      Deviance 713.767 652.606 717.054 657.424
      AIC 284.821 280.341 285.050 280.709
      BIC 294.381 289.902 294.610 290.269
      N 50 50 50 50
      =====================================================================


      We now want the IV (i.e. dpi, ddpi, log(dpi) and log(ddpi)) to appear first.



      Option 1



      # we will define a fake model which includes all the IVs
      mtables <- mtable("Model fake" = lm(sr ~ dpi + ddpi + log(dpi) + log(ddpi), LifeCycleSavings),
      "Model 1" = lm(sr ~ dpi + pop15 + pop75, LifeCycleSavings),
      "Model 2" = lm(sr ~ ddpi + pop15 + pop75, LifeCycleSavings),
      "Model 3" = lm(sr ~ log(dpi) + pop15 + pop75, LifeCycleSavings),
      "Model 4" = lm(sr ~ log(ddpi) + pop15 + pop75, LifeCycleSavings))
      # we will display mtables without the fake model
      mtables[2:5]
      # output
      Calls:
      Model 1: lm(formula = sr ~ dpi + pop15 + pop75, data = LifeCycleSavings)
      Model 2: lm(formula = sr ~ ddpi + pop15 + pop75, data = LifeCycleSavings)
      Model 3: lm(formula = sr ~ log(dpi) + pop15 + pop75, data = LifeCycleSavings)
      Model 4: lm(formula = sr ~ log(ddpi) + pop15 + pop75, data = LifeCycleSavings)

      =====================================================================
      Model 1 Model 2 Model 3 Model 4
      ---------------------------------------------------------------------
      (Intercept) 31.457*** 28.125*** 36.304** 26.118***
      (7.482) (7.184) (10.511) (7.416)
      dpi -0.001
      (0.001)
      ddpi 0.428*
      (0.188)
      log(dpi) -0.779
      (1.018)
      log(ddpi) 1.584*
      (0.722)
      pop15 -0.492** -0.452** -0.506** -0.408**
      (0.149) (0.141) (0.154) (0.144)
      pop75 -1.568 -1.835 -1.649 -1.663
      (1.121) (0.998) (1.110) (1.009)
      ---------------------------------------------------------------------
      R-squared 0.274 0.337 0.271 0.332
      adj. R-squared 0.227 0.293 0.223 0.288
      sigma 3.939 3.767 3.948 3.780
      F 5.797 7.778 5.700 7.608
      p 0.002 0.000 0.002 0.000
      Log-likelihood -137.410 -135.171 -137.525 -135.355
      Deviance 713.767 652.606 717.054 657.424
      AIC 284.821 280.341 285.050 280.709
      BIC 294.381 289.902 294.610 290.269
      N 50 50 50 50
      =====================================================================


      Option 2



      # stargazer can be an option
      library(stargazer)
      stargazer(lm(sr ~ dpi + pop15 + pop75, LifeCycleSavings),
      lm(sr ~ ddpi + pop15 + pop75, LifeCycleSavings),
      lm(sr ~ log(dpi) + pop15 + pop75, LifeCycleSavings),
      lm(sr ~ log(ddpi) + pop15 + pop75, LifeCycleSavings),
      type = "text", column.labels = c("Model 1", "Model 2", "Model 3", "Model 4"),
      model.numbers = FALSE)
      # output
      =====================================================================
      Dependent variable:
      ---------------------------------------
      sr
      Model 1 Model 2 Model 3 Model 4
      ---------------------------------------------------------------------
      dpi -0.001
      (0.001)

      ddpi 0.428**
      (0.188)

      log(dpi) -0.779
      (1.018)

      log(ddpi) 1.584**
      (0.722)

      pop15 -0.492*** -0.452*** -0.506*** -0.408***
      (0.149) (0.141) (0.154) (0.144)

      pop75 -1.568 -1.835* -1.649 -1.663
      (1.121) (0.998) (1.110) (1.009)

      Constant 31.457*** 28.125*** 36.304*** 26.118***
      (7.482) (7.184) (10.511) (7.416)

      ---------------------------------------------------------------------
      Observations 50 50 50 50
      R2 0.274 0.337 0.271 0.332
      Adjusted R2 0.227 0.293 0.223 0.288
      Residual Std. Error (df = 46) 3.939 3.767 3.948 3.780
      F Statistic (df = 3; 46) 5.797*** 7.778*** 5.700*** 7.608***
      =====================================================================
      Note: *p<0.1; **p<0.05; ***p<0.01


      Solution based on your data



      mtables <- mtable("Modell 0"=lm(DV ~ IV1 + IV2 + IV3),
      "Modell 1"=lm(DV ~ IV1 + CV1 + CV2),
      "Modell 2"=lm(DV ~ IV2 + CV1 + CV2),
      "Modell 3"=lm(DV ~ IV3 + CV1 + CV2))
      mtables[2:4]
      # or use stargazer() as above





      share|improve this answer

























        up vote
        1
        down vote



        accepted







        up vote
        1
        down vote



        accepted






        This is an intersiting question. Please, consider the following example.



        library(memisc)
        # independent variables (IV) are dpi, ddpi, log(dpi) and log(ddpi)
        # control variables (CV) are pop15 and pop75
        mtable("Model 1" = lm(sr ~ dpi + pop15 + pop75, LifeCycleSavings),
        "Model 2" = lm(sr ~ ddpi + pop15 + pop75, LifeCycleSavings),
        "Model 3" = lm(sr ~ log(dpi) + pop15 + pop75, LifeCycleSavings),
        "Model 4" = lm(sr ~ log(ddpi) + pop15 + pop75, LifeCycleSavings))
        # looks like mtable appends new coefficients to the list of coefficients defined in the first model
        # output
        Calls:
        Model 1: lm(formula = sr ~ dpi + pop15 + pop75, data = LifeCycleSavings)
        Model 2: lm(formula = sr ~ ddpi + pop15 + pop75, data = LifeCycleSavings)
        Model 3: lm(formula = sr ~ log(dpi) + pop15 + pop75, data = LifeCycleSavings)
        Model 4: lm(formula = sr ~ log(ddpi) + pop15 + pop75, data = LifeCycleSavings)

        =====================================================================
        Model 1 Model 2 Model 3 Model 4
        ---------------------------------------------------------------------
        (Intercept) 31.457*** 28.125*** 36.304** 26.118***
        (7.482) (7.184) (10.511) (7.416)
        dpi -0.001
        (0.001)
        pop15 -0.492** -0.452** -0.506** -0.408**
        (0.149) (0.141) (0.154) (0.144)
        pop75 -1.568 -1.835 -1.649 -1.663
        (1.121) (0.998) (1.110) (1.009)
        ddpi 0.428*
        (0.188)
        log(dpi) -0.779
        (1.018)
        log(ddpi) 1.584*
        (0.722)
        ---------------------------------------------------------------------
        R-squared 0.274 0.337 0.271 0.332
        adj. R-squared 0.227 0.293 0.223 0.288
        sigma 3.939 3.767 3.948 3.780
        F 5.797 7.778 5.700 7.608
        p 0.002 0.000 0.002 0.000
        Log-likelihood -137.410 -135.171 -137.525 -135.355
        Deviance 713.767 652.606 717.054 657.424
        AIC 284.821 280.341 285.050 280.709
        BIC 294.381 289.902 294.610 290.269
        N 50 50 50 50
        =====================================================================


        We now want the IV (i.e. dpi, ddpi, log(dpi) and log(ddpi)) to appear first.



        Option 1



        # we will define a fake model which includes all the IVs
        mtables <- mtable("Model fake" = lm(sr ~ dpi + ddpi + log(dpi) + log(ddpi), LifeCycleSavings),
        "Model 1" = lm(sr ~ dpi + pop15 + pop75, LifeCycleSavings),
        "Model 2" = lm(sr ~ ddpi + pop15 + pop75, LifeCycleSavings),
        "Model 3" = lm(sr ~ log(dpi) + pop15 + pop75, LifeCycleSavings),
        "Model 4" = lm(sr ~ log(ddpi) + pop15 + pop75, LifeCycleSavings))
        # we will display mtables without the fake model
        mtables[2:5]
        # output
        Calls:
        Model 1: lm(formula = sr ~ dpi + pop15 + pop75, data = LifeCycleSavings)
        Model 2: lm(formula = sr ~ ddpi + pop15 + pop75, data = LifeCycleSavings)
        Model 3: lm(formula = sr ~ log(dpi) + pop15 + pop75, data = LifeCycleSavings)
        Model 4: lm(formula = sr ~ log(ddpi) + pop15 + pop75, data = LifeCycleSavings)

        =====================================================================
        Model 1 Model 2 Model 3 Model 4
        ---------------------------------------------------------------------
        (Intercept) 31.457*** 28.125*** 36.304** 26.118***
        (7.482) (7.184) (10.511) (7.416)
        dpi -0.001
        (0.001)
        ddpi 0.428*
        (0.188)
        log(dpi) -0.779
        (1.018)
        log(ddpi) 1.584*
        (0.722)
        pop15 -0.492** -0.452** -0.506** -0.408**
        (0.149) (0.141) (0.154) (0.144)
        pop75 -1.568 -1.835 -1.649 -1.663
        (1.121) (0.998) (1.110) (1.009)
        ---------------------------------------------------------------------
        R-squared 0.274 0.337 0.271 0.332
        adj. R-squared 0.227 0.293 0.223 0.288
        sigma 3.939 3.767 3.948 3.780
        F 5.797 7.778 5.700 7.608
        p 0.002 0.000 0.002 0.000
        Log-likelihood -137.410 -135.171 -137.525 -135.355
        Deviance 713.767 652.606 717.054 657.424
        AIC 284.821 280.341 285.050 280.709
        BIC 294.381 289.902 294.610 290.269
        N 50 50 50 50
        =====================================================================


        Option 2



        # stargazer can be an option
        library(stargazer)
        stargazer(lm(sr ~ dpi + pop15 + pop75, LifeCycleSavings),
        lm(sr ~ ddpi + pop15 + pop75, LifeCycleSavings),
        lm(sr ~ log(dpi) + pop15 + pop75, LifeCycleSavings),
        lm(sr ~ log(ddpi) + pop15 + pop75, LifeCycleSavings),
        type = "text", column.labels = c("Model 1", "Model 2", "Model 3", "Model 4"),
        model.numbers = FALSE)
        # output
        =====================================================================
        Dependent variable:
        ---------------------------------------
        sr
        Model 1 Model 2 Model 3 Model 4
        ---------------------------------------------------------------------
        dpi -0.001
        (0.001)

        ddpi 0.428**
        (0.188)

        log(dpi) -0.779
        (1.018)

        log(ddpi) 1.584**
        (0.722)

        pop15 -0.492*** -0.452*** -0.506*** -0.408***
        (0.149) (0.141) (0.154) (0.144)

        pop75 -1.568 -1.835* -1.649 -1.663
        (1.121) (0.998) (1.110) (1.009)

        Constant 31.457*** 28.125*** 36.304*** 26.118***
        (7.482) (7.184) (10.511) (7.416)

        ---------------------------------------------------------------------
        Observations 50 50 50 50
        R2 0.274 0.337 0.271 0.332
        Adjusted R2 0.227 0.293 0.223 0.288
        Residual Std. Error (df = 46) 3.939 3.767 3.948 3.780
        F Statistic (df = 3; 46) 5.797*** 7.778*** 5.700*** 7.608***
        =====================================================================
        Note: *p<0.1; **p<0.05; ***p<0.01


        Solution based on your data



        mtables <- mtable("Modell 0"=lm(DV ~ IV1 + IV2 + IV3),
        "Modell 1"=lm(DV ~ IV1 + CV1 + CV2),
        "Modell 2"=lm(DV ~ IV2 + CV1 + CV2),
        "Modell 3"=lm(DV ~ IV3 + CV1 + CV2))
        mtables[2:4]
        # or use stargazer() as above





        share|improve this answer














        This is an intersiting question. Please, consider the following example.



        library(memisc)
        # independent variables (IV) are dpi, ddpi, log(dpi) and log(ddpi)
        # control variables (CV) are pop15 and pop75
        mtable("Model 1" = lm(sr ~ dpi + pop15 + pop75, LifeCycleSavings),
        "Model 2" = lm(sr ~ ddpi + pop15 + pop75, LifeCycleSavings),
        "Model 3" = lm(sr ~ log(dpi) + pop15 + pop75, LifeCycleSavings),
        "Model 4" = lm(sr ~ log(ddpi) + pop15 + pop75, LifeCycleSavings))
        # looks like mtable appends new coefficients to the list of coefficients defined in the first model
        # output
        Calls:
        Model 1: lm(formula = sr ~ dpi + pop15 + pop75, data = LifeCycleSavings)
        Model 2: lm(formula = sr ~ ddpi + pop15 + pop75, data = LifeCycleSavings)
        Model 3: lm(formula = sr ~ log(dpi) + pop15 + pop75, data = LifeCycleSavings)
        Model 4: lm(formula = sr ~ log(ddpi) + pop15 + pop75, data = LifeCycleSavings)

        =====================================================================
        Model 1 Model 2 Model 3 Model 4
        ---------------------------------------------------------------------
        (Intercept) 31.457*** 28.125*** 36.304** 26.118***
        (7.482) (7.184) (10.511) (7.416)
        dpi -0.001
        (0.001)
        pop15 -0.492** -0.452** -0.506** -0.408**
        (0.149) (0.141) (0.154) (0.144)
        pop75 -1.568 -1.835 -1.649 -1.663
        (1.121) (0.998) (1.110) (1.009)
        ddpi 0.428*
        (0.188)
        log(dpi) -0.779
        (1.018)
        log(ddpi) 1.584*
        (0.722)
        ---------------------------------------------------------------------
        R-squared 0.274 0.337 0.271 0.332
        adj. R-squared 0.227 0.293 0.223 0.288
        sigma 3.939 3.767 3.948 3.780
        F 5.797 7.778 5.700 7.608
        p 0.002 0.000 0.002 0.000
        Log-likelihood -137.410 -135.171 -137.525 -135.355
        Deviance 713.767 652.606 717.054 657.424
        AIC 284.821 280.341 285.050 280.709
        BIC 294.381 289.902 294.610 290.269
        N 50 50 50 50
        =====================================================================


        We now want the IV (i.e. dpi, ddpi, log(dpi) and log(ddpi)) to appear first.



        Option 1



        # we will define a fake model which includes all the IVs
        mtables <- mtable("Model fake" = lm(sr ~ dpi + ddpi + log(dpi) + log(ddpi), LifeCycleSavings),
        "Model 1" = lm(sr ~ dpi + pop15 + pop75, LifeCycleSavings),
        "Model 2" = lm(sr ~ ddpi + pop15 + pop75, LifeCycleSavings),
        "Model 3" = lm(sr ~ log(dpi) + pop15 + pop75, LifeCycleSavings),
        "Model 4" = lm(sr ~ log(ddpi) + pop15 + pop75, LifeCycleSavings))
        # we will display mtables without the fake model
        mtables[2:5]
        # output
        Calls:
        Model 1: lm(formula = sr ~ dpi + pop15 + pop75, data = LifeCycleSavings)
        Model 2: lm(formula = sr ~ ddpi + pop15 + pop75, data = LifeCycleSavings)
        Model 3: lm(formula = sr ~ log(dpi) + pop15 + pop75, data = LifeCycleSavings)
        Model 4: lm(formula = sr ~ log(ddpi) + pop15 + pop75, data = LifeCycleSavings)

        =====================================================================
        Model 1 Model 2 Model 3 Model 4
        ---------------------------------------------------------------------
        (Intercept) 31.457*** 28.125*** 36.304** 26.118***
        (7.482) (7.184) (10.511) (7.416)
        dpi -0.001
        (0.001)
        ddpi 0.428*
        (0.188)
        log(dpi) -0.779
        (1.018)
        log(ddpi) 1.584*
        (0.722)
        pop15 -0.492** -0.452** -0.506** -0.408**
        (0.149) (0.141) (0.154) (0.144)
        pop75 -1.568 -1.835 -1.649 -1.663
        (1.121) (0.998) (1.110) (1.009)
        ---------------------------------------------------------------------
        R-squared 0.274 0.337 0.271 0.332
        adj. R-squared 0.227 0.293 0.223 0.288
        sigma 3.939 3.767 3.948 3.780
        F 5.797 7.778 5.700 7.608
        p 0.002 0.000 0.002 0.000
        Log-likelihood -137.410 -135.171 -137.525 -135.355
        Deviance 713.767 652.606 717.054 657.424
        AIC 284.821 280.341 285.050 280.709
        BIC 294.381 289.902 294.610 290.269
        N 50 50 50 50
        =====================================================================


        Option 2



        # stargazer can be an option
        library(stargazer)
        stargazer(lm(sr ~ dpi + pop15 + pop75, LifeCycleSavings),
        lm(sr ~ ddpi + pop15 + pop75, LifeCycleSavings),
        lm(sr ~ log(dpi) + pop15 + pop75, LifeCycleSavings),
        lm(sr ~ log(ddpi) + pop15 + pop75, LifeCycleSavings),
        type = "text", column.labels = c("Model 1", "Model 2", "Model 3", "Model 4"),
        model.numbers = FALSE)
        # output
        =====================================================================
        Dependent variable:
        ---------------------------------------
        sr
        Model 1 Model 2 Model 3 Model 4
        ---------------------------------------------------------------------
        dpi -0.001
        (0.001)

        ddpi 0.428**
        (0.188)

        log(dpi) -0.779
        (1.018)

        log(ddpi) 1.584**
        (0.722)

        pop15 -0.492*** -0.452*** -0.506*** -0.408***
        (0.149) (0.141) (0.154) (0.144)

        pop75 -1.568 -1.835* -1.649 -1.663
        (1.121) (0.998) (1.110) (1.009)

        Constant 31.457*** 28.125*** 36.304*** 26.118***
        (7.482) (7.184) (10.511) (7.416)

        ---------------------------------------------------------------------
        Observations 50 50 50 50
        R2 0.274 0.337 0.271 0.332
        Adjusted R2 0.227 0.293 0.223 0.288
        Residual Std. Error (df = 46) 3.939 3.767 3.948 3.780
        F Statistic (df = 3; 46) 5.797*** 7.778*** 5.700*** 7.608***
        =====================================================================
        Note: *p<0.1; **p<0.05; ***p<0.01


        Solution based on your data



        mtables <- mtable("Modell 0"=lm(DV ~ IV1 + IV2 + IV3),
        "Modell 1"=lm(DV ~ IV1 + CV1 + CV2),
        "Modell 2"=lm(DV ~ IV2 + CV1 + CV2),
        "Modell 3"=lm(DV ~ IV3 + CV1 + CV2))
        mtables[2:4]
        # or use stargazer() as above






        share|improve this answer














        share|improve this answer



        share|improve this answer








        edited Nov 10 at 18:43

























        answered Nov 9 at 16:44









        ANG

        4,0472620




        4,0472620






























             

            draft saved


            draft discarded



















































             


            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53227227%2fchange-order-of-appearance-of-independent-variables-in-regression-table-using-mt%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            Bressuire

            Vorschmack

            Quarantine