Python WebScrap With BeautifulSoup - Proxy Error Handler
I am trying to webscrap ETFs daily information with Python and BeautifulSoup. My code extracts info from Wall Street Journal Page. But I get a max number of retries.
I succesfully scraped 10+ ETFs in one run but now I am trying to scrap new ETFs but I keep getting this proxy error:
ProxyError: HTTPSConnectionPool(host='quotes.wsj.com', port=443): Max
retries exceeded with url: /etf/ACWI (Caused by ProxyError('Cannot
connect to proxy.', error('Tunnel connection failed: 407 Proxy
Authorization Required',)))
I was wondering if there is a way to handle this error. My code is the following:
import requests
from bs4 import BeautifulSoup
import pandas as pd
ticker_list = ["ACWI", "AGG", "EMB", "VTI", "GOVT", "IEMB", "IEMG", "EEM", "PCY", "CWI", "SPY", "EMLC"]
x = len(ticker_list)
date, open_list, previous_list, assets_list, nav_list, shares_list = ( for a in range(6))
for i in range(0,x):
ticker = ticker_list[i]
date.append("20181107")
link = "https://quotes.wsj.com/etf/" + ticker
proxies = {"http":"http://username:password@proxy_ip:proxy_port"}
r = requests.get(link, proxies=proxies)
#print (r.content)
html = r.text
soup = BeautifulSoup(html, "html.parser")
aux_list, aux_list_2 = ( for b in range(2))
for data in soup.find_all("ul", attrs={"class":"cr_data_collection"}):
for d in data:
if d.name == "li":
aux_list.append(d.text)
print(d.text)
print ("Start List Construction!")
k = len(aux_list)
for j in range(0,k):
auxiliar =
if "Volume" in aux_list[j]:
auxiliar = aux_list[j].split()
volume = auxiliar[1]
if "Open" in aux_list[j]:
auxiliar = aux_list[j].split()
open_price = auxiliar[1]
open_list.append(auxiliar[1])
if "Prior Close" in aux_list[j]:
auxiliar = aux_list[j].split()
previous_price = auxiliar[2]
previous_list.append(auxiliar[2])
if "Net Assets" in aux_list[j]:
auxiliar = aux_list[j].split()
net_assets = auxiliar[2] # In Billions
assets_list.append(auxiliar[2])
if "NAV" in aux_list[j]:
auxiliar = aux_list[j].split()
nav = auxiliar[1]
nav_list.append(auxiliar[1])
if "Shares Outstanding" in aux_list[j]:
auxiliar = aux_list[j].split()
shares = auxiliar[2] # In Millions
shares_list.append(auxiliar[2])
print ("Open Price: ", open_price, "Previous Price: ", previous_price)
print ("Net Assets: ", net_assets, "NAV: ", nav, "Shares Outstanding: ", shares)
print nav_list, len(nav_list)
print open_list, len(open_list)
print previous_list, len(previous_list)
print assets_list, len(assets_list)
print shares_list, len(shares_list)
data = {"Fecha": date, "Ticker": ticker_list, "NAV": nav_list, "Previous Close": previous_list, "Open Price": open_list, "Net Assets (Bn)": assets_list, "Shares (Mill)": shares_list}
df = pd.DataFrame(data, columns = ["Fecha", "Ticker", "Net Assets", "Previous Close", "Open Price", "NAV", "Shares"])
df
df.to_excel("C:\Users\labnrodriguez\Documents\out_WSJ.xlsx", sheet_name="ETFs", header = True, index = False) #, startrow = rows)
The output is the following table in a Excel file:
python http web-scraping beautifulsoup python-requests
add a comment |
I am trying to webscrap ETFs daily information with Python and BeautifulSoup. My code extracts info from Wall Street Journal Page. But I get a max number of retries.
I succesfully scraped 10+ ETFs in one run but now I am trying to scrap new ETFs but I keep getting this proxy error:
ProxyError: HTTPSConnectionPool(host='quotes.wsj.com', port=443): Max
retries exceeded with url: /etf/ACWI (Caused by ProxyError('Cannot
connect to proxy.', error('Tunnel connection failed: 407 Proxy
Authorization Required',)))
I was wondering if there is a way to handle this error. My code is the following:
import requests
from bs4 import BeautifulSoup
import pandas as pd
ticker_list = ["ACWI", "AGG", "EMB", "VTI", "GOVT", "IEMB", "IEMG", "EEM", "PCY", "CWI", "SPY", "EMLC"]
x = len(ticker_list)
date, open_list, previous_list, assets_list, nav_list, shares_list = ( for a in range(6))
for i in range(0,x):
ticker = ticker_list[i]
date.append("20181107")
link = "https://quotes.wsj.com/etf/" + ticker
proxies = {"http":"http://username:password@proxy_ip:proxy_port"}
r = requests.get(link, proxies=proxies)
#print (r.content)
html = r.text
soup = BeautifulSoup(html, "html.parser")
aux_list, aux_list_2 = ( for b in range(2))
for data in soup.find_all("ul", attrs={"class":"cr_data_collection"}):
for d in data:
if d.name == "li":
aux_list.append(d.text)
print(d.text)
print ("Start List Construction!")
k = len(aux_list)
for j in range(0,k):
auxiliar =
if "Volume" in aux_list[j]:
auxiliar = aux_list[j].split()
volume = auxiliar[1]
if "Open" in aux_list[j]:
auxiliar = aux_list[j].split()
open_price = auxiliar[1]
open_list.append(auxiliar[1])
if "Prior Close" in aux_list[j]:
auxiliar = aux_list[j].split()
previous_price = auxiliar[2]
previous_list.append(auxiliar[2])
if "Net Assets" in aux_list[j]:
auxiliar = aux_list[j].split()
net_assets = auxiliar[2] # In Billions
assets_list.append(auxiliar[2])
if "NAV" in aux_list[j]:
auxiliar = aux_list[j].split()
nav = auxiliar[1]
nav_list.append(auxiliar[1])
if "Shares Outstanding" in aux_list[j]:
auxiliar = aux_list[j].split()
shares = auxiliar[2] # In Millions
shares_list.append(auxiliar[2])
print ("Open Price: ", open_price, "Previous Price: ", previous_price)
print ("Net Assets: ", net_assets, "NAV: ", nav, "Shares Outstanding: ", shares)
print nav_list, len(nav_list)
print open_list, len(open_list)
print previous_list, len(previous_list)
print assets_list, len(assets_list)
print shares_list, len(shares_list)
data = {"Fecha": date, "Ticker": ticker_list, "NAV": nav_list, "Previous Close": previous_list, "Open Price": open_list, "Net Assets (Bn)": assets_list, "Shares (Mill)": shares_list}
df = pd.DataFrame(data, columns = ["Fecha", "Ticker", "Net Assets", "Previous Close", "Open Price", "NAV", "Shares"])
df
df.to_excel("C:\Users\labnrodriguez\Documents\out_WSJ.xlsx", sheet_name="ETFs", header = True, index = False) #, startrow = rows)
The output is the following table in a Excel file:
python http web-scraping beautifulsoup python-requests
try add sleep between request
– ewwink
Nov 14 '18 at 10:42
Thank! I will give it a try
– Nico Rodriguez
Nov 14 '18 at 18:08
didn't work! It keeps throwing the same error
– Nico Rodriguez
Nov 15 '18 at 20:25
add a comment |
I am trying to webscrap ETFs daily information with Python and BeautifulSoup. My code extracts info from Wall Street Journal Page. But I get a max number of retries.
I succesfully scraped 10+ ETFs in one run but now I am trying to scrap new ETFs but I keep getting this proxy error:
ProxyError: HTTPSConnectionPool(host='quotes.wsj.com', port=443): Max
retries exceeded with url: /etf/ACWI (Caused by ProxyError('Cannot
connect to proxy.', error('Tunnel connection failed: 407 Proxy
Authorization Required',)))
I was wondering if there is a way to handle this error. My code is the following:
import requests
from bs4 import BeautifulSoup
import pandas as pd
ticker_list = ["ACWI", "AGG", "EMB", "VTI", "GOVT", "IEMB", "IEMG", "EEM", "PCY", "CWI", "SPY", "EMLC"]
x = len(ticker_list)
date, open_list, previous_list, assets_list, nav_list, shares_list = ( for a in range(6))
for i in range(0,x):
ticker = ticker_list[i]
date.append("20181107")
link = "https://quotes.wsj.com/etf/" + ticker
proxies = {"http":"http://username:password@proxy_ip:proxy_port"}
r = requests.get(link, proxies=proxies)
#print (r.content)
html = r.text
soup = BeautifulSoup(html, "html.parser")
aux_list, aux_list_2 = ( for b in range(2))
for data in soup.find_all("ul", attrs={"class":"cr_data_collection"}):
for d in data:
if d.name == "li":
aux_list.append(d.text)
print(d.text)
print ("Start List Construction!")
k = len(aux_list)
for j in range(0,k):
auxiliar =
if "Volume" in aux_list[j]:
auxiliar = aux_list[j].split()
volume = auxiliar[1]
if "Open" in aux_list[j]:
auxiliar = aux_list[j].split()
open_price = auxiliar[1]
open_list.append(auxiliar[1])
if "Prior Close" in aux_list[j]:
auxiliar = aux_list[j].split()
previous_price = auxiliar[2]
previous_list.append(auxiliar[2])
if "Net Assets" in aux_list[j]:
auxiliar = aux_list[j].split()
net_assets = auxiliar[2] # In Billions
assets_list.append(auxiliar[2])
if "NAV" in aux_list[j]:
auxiliar = aux_list[j].split()
nav = auxiliar[1]
nav_list.append(auxiliar[1])
if "Shares Outstanding" in aux_list[j]:
auxiliar = aux_list[j].split()
shares = auxiliar[2] # In Millions
shares_list.append(auxiliar[2])
print ("Open Price: ", open_price, "Previous Price: ", previous_price)
print ("Net Assets: ", net_assets, "NAV: ", nav, "Shares Outstanding: ", shares)
print nav_list, len(nav_list)
print open_list, len(open_list)
print previous_list, len(previous_list)
print assets_list, len(assets_list)
print shares_list, len(shares_list)
data = {"Fecha": date, "Ticker": ticker_list, "NAV": nav_list, "Previous Close": previous_list, "Open Price": open_list, "Net Assets (Bn)": assets_list, "Shares (Mill)": shares_list}
df = pd.DataFrame(data, columns = ["Fecha", "Ticker", "Net Assets", "Previous Close", "Open Price", "NAV", "Shares"])
df
df.to_excel("C:\Users\labnrodriguez\Documents\out_WSJ.xlsx", sheet_name="ETFs", header = True, index = False) #, startrow = rows)
The output is the following table in a Excel file:
python http web-scraping beautifulsoup python-requests
I am trying to webscrap ETFs daily information with Python and BeautifulSoup. My code extracts info from Wall Street Journal Page. But I get a max number of retries.
I succesfully scraped 10+ ETFs in one run but now I am trying to scrap new ETFs but I keep getting this proxy error:
ProxyError: HTTPSConnectionPool(host='quotes.wsj.com', port=443): Max
retries exceeded with url: /etf/ACWI (Caused by ProxyError('Cannot
connect to proxy.', error('Tunnel connection failed: 407 Proxy
Authorization Required',)))
I was wondering if there is a way to handle this error. My code is the following:
import requests
from bs4 import BeautifulSoup
import pandas as pd
ticker_list = ["ACWI", "AGG", "EMB", "VTI", "GOVT", "IEMB", "IEMG", "EEM", "PCY", "CWI", "SPY", "EMLC"]
x = len(ticker_list)
date, open_list, previous_list, assets_list, nav_list, shares_list = ( for a in range(6))
for i in range(0,x):
ticker = ticker_list[i]
date.append("20181107")
link = "https://quotes.wsj.com/etf/" + ticker
proxies = {"http":"http://username:password@proxy_ip:proxy_port"}
r = requests.get(link, proxies=proxies)
#print (r.content)
html = r.text
soup = BeautifulSoup(html, "html.parser")
aux_list, aux_list_2 = ( for b in range(2))
for data in soup.find_all("ul", attrs={"class":"cr_data_collection"}):
for d in data:
if d.name == "li":
aux_list.append(d.text)
print(d.text)
print ("Start List Construction!")
k = len(aux_list)
for j in range(0,k):
auxiliar =
if "Volume" in aux_list[j]:
auxiliar = aux_list[j].split()
volume = auxiliar[1]
if "Open" in aux_list[j]:
auxiliar = aux_list[j].split()
open_price = auxiliar[1]
open_list.append(auxiliar[1])
if "Prior Close" in aux_list[j]:
auxiliar = aux_list[j].split()
previous_price = auxiliar[2]
previous_list.append(auxiliar[2])
if "Net Assets" in aux_list[j]:
auxiliar = aux_list[j].split()
net_assets = auxiliar[2] # In Billions
assets_list.append(auxiliar[2])
if "NAV" in aux_list[j]:
auxiliar = aux_list[j].split()
nav = auxiliar[1]
nav_list.append(auxiliar[1])
if "Shares Outstanding" in aux_list[j]:
auxiliar = aux_list[j].split()
shares = auxiliar[2] # In Millions
shares_list.append(auxiliar[2])
print ("Open Price: ", open_price, "Previous Price: ", previous_price)
print ("Net Assets: ", net_assets, "NAV: ", nav, "Shares Outstanding: ", shares)
print nav_list, len(nav_list)
print open_list, len(open_list)
print previous_list, len(previous_list)
print assets_list, len(assets_list)
print shares_list, len(shares_list)
data = {"Fecha": date, "Ticker": ticker_list, "NAV": nav_list, "Previous Close": previous_list, "Open Price": open_list, "Net Assets (Bn)": assets_list, "Shares (Mill)": shares_list}
df = pd.DataFrame(data, columns = ["Fecha", "Ticker", "Net Assets", "Previous Close", "Open Price", "NAV", "Shares"])
df
df.to_excel("C:\Users\labnrodriguez\Documents\out_WSJ.xlsx", sheet_name="ETFs", header = True, index = False) #, startrow = rows)
The output is the following table in a Excel file:
python http web-scraping beautifulsoup python-requests
python http web-scraping beautifulsoup python-requests
asked Nov 13 '18 at 15:20
Nico RodriguezNico Rodriguez
256
256
try add sleep between request
– ewwink
Nov 14 '18 at 10:42
Thank! I will give it a try
– Nico Rodriguez
Nov 14 '18 at 18:08
didn't work! It keeps throwing the same error
– Nico Rodriguez
Nov 15 '18 at 20:25
add a comment |
try add sleep between request
– ewwink
Nov 14 '18 at 10:42
Thank! I will give it a try
– Nico Rodriguez
Nov 14 '18 at 18:08
didn't work! It keeps throwing the same error
– Nico Rodriguez
Nov 15 '18 at 20:25
try add sleep between request
– ewwink
Nov 14 '18 at 10:42
try add sleep between request
– ewwink
Nov 14 '18 at 10:42
Thank! I will give it a try
– Nico Rodriguez
Nov 14 '18 at 18:08
Thank! I will give it a try
– Nico Rodriguez
Nov 14 '18 at 18:08
didn't work! It keeps throwing the same error
– Nico Rodriguez
Nov 15 '18 at 20:25
didn't work! It keeps throwing the same error
– Nico Rodriguez
Nov 15 '18 at 20:25
add a comment |
1 Answer
1
active
oldest
votes
You don't need to scrape their data in the first place. The etfdb-api
Node.js package provides you with ETF data:
- Ticker
- Assets under Management
- Open Price
- Avg. Volumne
- etc.
See my post here: https://stackoverflow.com/a/53859924/9986657
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53284149%2fpython-webscrap-with-beautifulsoup-proxy-error-handler%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
You don't need to scrape their data in the first place. The etfdb-api
Node.js package provides you with ETF data:
- Ticker
- Assets under Management
- Open Price
- Avg. Volumne
- etc.
See my post here: https://stackoverflow.com/a/53859924/9986657
add a comment |
You don't need to scrape their data in the first place. The etfdb-api
Node.js package provides you with ETF data:
- Ticker
- Assets under Management
- Open Price
- Avg. Volumne
- etc.
See my post here: https://stackoverflow.com/a/53859924/9986657
add a comment |
You don't need to scrape their data in the first place. The etfdb-api
Node.js package provides you with ETF data:
- Ticker
- Assets under Management
- Open Price
- Avg. Volumne
- etc.
See my post here: https://stackoverflow.com/a/53859924/9986657
You don't need to scrape their data in the first place. The etfdb-api
Node.js package provides you with ETF data:
- Ticker
- Assets under Management
- Open Price
- Avg. Volumne
- etc.
See my post here: https://stackoverflow.com/a/53859924/9986657
answered Dec 19 '18 at 22:39
JanJan
464
464
add a comment |
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53284149%2fpython-webscrap-with-beautifulsoup-proxy-error-handler%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
try add sleep between request
– ewwink
Nov 14 '18 at 10:42
Thank! I will give it a try
– Nico Rodriguez
Nov 14 '18 at 18:08
didn't work! It keeps throwing the same error
– Nico Rodriguez
Nov 15 '18 at 20:25