Projective hierarchy




descriptive set theory concept


In the mathematical field of descriptive set theory, a subset A{displaystyle A}A of a Polish space X{displaystyle X}X is projective if it is Σn1{displaystyle {boldsymbol {Sigma }}_{n}^{1}}{boldsymbol  {Sigma }}_{n}^{1} for some positive integer n{displaystyle n}n. Here A{displaystyle A}A is




  • Σ11{displaystyle {boldsymbol {Sigma }}_{1}^{1}}{boldsymbol  {Sigma }}_{1}^{1} if A{displaystyle A}A is analytic


  • Πn1{displaystyle {boldsymbol {Pi }}_{n}^{1}}{boldsymbol  {Pi }}_{n}^{1} if the complement of A{displaystyle A}A, X∖A{displaystyle Xsetminus A}Xsetminus A, is Σn1{displaystyle {boldsymbol {Sigma }}_{n}^{1}}{boldsymbol  {Sigma }}_{n}^{1}


  • Σn+11{displaystyle {boldsymbol {Sigma }}_{n+1}^{1}}{boldsymbol  {Sigma }}_{{n+1}}^{1} if there is a Polish space Y{displaystyle Y}Y and a Πn1{displaystyle {boldsymbol {Pi }}_{n}^{1}}{boldsymbol  {Pi }}_{n}^{1} subset C⊆Y{displaystyle Csubseteq Xtimes Y}Csubseteq Xtimes Y such that A{displaystyle A}A is the projection of C{displaystyle C}C; that is, A={x∈X∣y∈Y(x,y)∈C}{displaystyle A={xin Xmid exists yin Y(x,y)in C}}A={xin X mid exists yin Y (x,y)in C}


The choice of the Polish space Y{displaystyle Y}Y in the third clause above is not very important; it could be replaced in the definition by a fixed uncountable Polish space, say Baire space or Cantor space or the real line.



Relationship to the analytical hierarchy


There is a close relationship between the relativized analytical hierarchy on subsets of Baire space (denoted by lightface letters Σ{displaystyle Sigma }Sigma and Π{displaystyle Pi }Pi ) and the projective hierarchy on subsets of Baire space (denoted by boldface letters Σ{displaystyle {boldsymbol {Sigma }}}boldsymbol{Sigma} and Π{displaystyle {boldsymbol {Pi }}}boldsymbol{Pi}). Not every Σn1{displaystyle {boldsymbol {Sigma }}_{n}^{1}}{boldsymbol  {Sigma }}_{n}^{1} subset of Baire space is Σn1{displaystyle Sigma _{n}^{1}}Sigma^1_n. It is true, however, that if a subset X of Baire space is Σn1{displaystyle {boldsymbol {Sigma }}_{n}^{1}}{boldsymbol  {Sigma }}_{n}^{1} then there is a set of natural numbers A such that X is Σn1,A{displaystyle Sigma _{n}^{1,A}}Sigma _{n}^{{1,A}}. A similar statement holds for Πn1{displaystyle {boldsymbol {Pi }}_{n}^{1}}{boldsymbol  {Pi }}_{n}^{1} sets. Thus the sets classified by the projective hierarchy are exactly the sets classified by the relativized version of the analytical hierarchy. This relationship is important in effective descriptive set theory.


A similar relationship between the projective hierarchy and the relativized analytical hierarchy holds for subsets of Cantor space and, more generally, subsets of any effective Polish space.



Table














































































































Lightface

Boldface
Σ0
0
= Π0
0
= Δ0
0
(sometimes the same as Δ0
1
)

Σ0
0
= Π0
0
= Δ0
0
(if defined)
Δ0
1
= recursive

Δ0
1
= clopen
Σ0
1
= recursively enumerable
Π0
1
= co-recursively enumerable

Σ0
1
= G = open

Π0
1
= F = closed
Δ0
2


Δ0
2

Σ0
2

Π0
2


Σ0
2
= Fσ

Π0
2
= Gδ
Δ0
3


Δ0
3

Σ0
3

Π0
3


Σ0
3
= Gδσ

Π0
3
= Fσδ


Σ0
= Π0
= Δ0
= Σ1
0
= Π1
0
= Δ1
0
= arithmetical

Σ0
= Π0
= Δ0
= Σ1
0
= Π1
0
= Δ1
0
= boldface arithmetical


Δ0
α
(α recursive)

Δ0
α
(α countable)
Σ0
α

Π0
α


Σ0
α


Π0
α



Σ0
ωCK
1
= Π0
ωCK
1
= Δ0
ωCK
1
= Δ1
1
= hyperarithmetical

Σ0
ω1
= Π0
ω1
= Δ0
ω1
= Δ1
1
= B = Borel
Σ1
1
= lightface analytic
Π1
1
= lightface coanalytic

Σ1
1
= A = analytic

Π1
1
= CA = coanalytic
Δ1
2


Δ1
2

Σ1
2

Π1
2


Σ1
2
= PCA

Π1
2
= CPCA
Δ1
3


Δ1
3

Σ1
3

Π1
3


Σ1
3
= PCPCA

Π1
3
= CPCPCA


Σ1
= Π1
= Δ1
= Σ2
0
= Π2
0
= Δ2
0
= analytical

Σ1
= Π1
= Δ1
= Σ2
0
= Π2
0
= Δ2
0
= P = projective






References




  • Kechris, A. S. (1995), Classical Descriptive Set Theory, Berlin, New York: Springer-Verlag, ISBN 978-0-387-94374-9.mw-parser-output cite.citation{font-style:inherit}.mw-parser-output q{quotes:"""""""'""'"}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-limited a,.mw-parser-output .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}


  • Rogers, Hartley (1987) [1967], The Theory of Recursive Functions and Effective Computability, First MIT press paperback edition, ISBN 978-0-262-68052-3




Popular posts from this blog

Bressuire

Vorschmack

Quarantine