Twistor theory




Twistor theory was proposed by Roger Penrose in 1967[1] as a possible path[2] to quantum gravity and has evolved into a branch of theoretical and mathematical physics. Penrose proposed that twistor space should be the basic arena for physics from which space-time itself should emerge. It leads to a powerful set of mathematical tools that have applications to differential and integral geometry, nonlinear differential equations and representation theory and in physics to relativity and quantum field theory, in particular to scattering amplitudes.




Contents






  • 1 Overview


  • 2 The twistor correspondence


  • 3 Variations


    • 3.1 Supertwistors


    • 3.2 Hyper-Kähler manifolds


    • 3.3 Palatial twistor theory




  • 4 See also


  • 5 Notes


  • 6 References


  • 7 Further reading


  • 8 External links





Overview


Mathematically, projective twistor space PT{displaystyle mathbb {PT} }mathbb{PT} is a three-dimensional complex manifold, complex projective 3-space CP3{displaystyle mathbb {CP} ^{3}}mathbb{CP}^3. Physically it has the interpretation as the space of massless particles with spin. It is the projectivisation of a 4-dimensional complex vector space, non-projective twistor space T{displaystyle mathbb {T} }mathbb {T} with a Hermitian form of signature (2,2) and a holomorphic volume form. This can be most naturally understood as the space of chiral (Weyl) spinors for the conformal group SO(4,2)/Z2{displaystyle SO(4,2)/mathbb {Z} _{2}}{displaystyle SO(4,2)/mathbb {Z} _{2}} of Minkowski space; it is the fundamental representation of the spin group SU(2,2){displaystyle SU(2,2)}{displaystyle SU(2,2)} of the conformal group. This definition can be extended to arbitrary dimensions except that beyond dimension four, one defines projective twistor space to be the space of projective pure spinors for the conformal group.[3][4]


In its original form, twistor theory encodes physical fields on Minkowski space into complex analytic objects on twistor space via the Penrose transform. This is especially natural for massless fields of arbitrary spin. In the first instance these are obtained via contour integral formulae in terms of free holomorphic functions on regions in twistor space. The holomorphic twistor functions that give rise to solutions to the massless field equations are more correctly understood as Cech representatives of analytic cohomology classes on regions in PT{displaystyle mathbb {PT} }mathbb{PT}. These correspondences have been extended to certain nonlinear fields, including self-dual gravity in Penrose's non-linear graviton construction[5] and self-dual Yang-Mills in Ward's construction;[6] the former gives rise to deformations of the underlying complex structure of regions in PT{displaystyle mathbb {PT} }mathbb{PT}, and the latter to certain holomorphic vector bundles over regions in PT{displaystyle mathbb {PT} }mathbb{PT}. These constructions have had wide applications.[7][8][9]


The self-duality condition is a major limitation for incorporating the full nonlinearities of physical theories, although it does suffice for Yang-Mills-Higgs monopoles and instantons.[10] An early attempt to overcome this restriction was the introduction of ambitwistors by Witten[11] and by Isenberg, Yasskin & Green.[12] Ambitwistor space is the space of complexified light rays or massless particles and can be regarded as a complexification or cotangent bundle of the original twistor description. These apply to general fields but the field equations are no longer so simply expressed.


Twistorial formulae for interactions beyond the self-dual sector first arose from Witten's twistor-string theory.[13] This is a quantum theory of holomorphic maps of a Riemann surface into twistor space. It gave rise to the remarkably compact RSV (Roiban, Spradlin & Volovich) formulae for tree-level S-matrices of Yang-Mills theories,[14] but its gravity degrees of freedom gave rise to a version of conformal supergravity limiting its applicability; conformal gravity is an unphysical theory containing ghosts, but its interactions are combined with those of Yang-Mills in loops amplitudes calculated via twistor-string theory.[15]


Despite its shortcomings, twistor-string theory led to rapid developments in the study of scattering amplitudes. One was the so-called MHV formalism[16] loosely based on disconnected strings, but was given a more basic foundation in terms of a twistor action for full Yang-Mills theory in twistor space.[17] Another key development was the introduction of BCFW recursion.[18] This has a natural formulation in twistor space[19][20] that in turn led to remarkable formulations of scattering amplitudes in terms of grassmannian integral formulae[21][22] and polytopes.[23] These ideas have evolved more recently into the positive grassmannian[24] and amplituhedron.


Twistor string theory was extended first by generalising the RSV Yang-Mills amplitude formula, and then by finding the underlying string theory. The extension to gravity was given by Cachazo & Skinner,[25] and formulated as a twistor-string theory for maximal supergravity by David Skinner.[26] Analogous formulae were then found in all dimensions by Cachazo, He & Yuan for Yang-Mills and gravity[27] and subsequently for a variety of other theories.[28] They were then understood as string theories in ambitwistor space by Mason & Skinner[29] in a general framework that includes the original twistor-string and extends to give a number of new models and formulae.[30][31][32] As string theories they have the same critical dimensions as conventional string theory; for example the type II supersymmetric versions are critical in ten dimensions and are equivalent to the full field theory of type II supergravities in ten dimensions (this is distinct from conventional string theories that also have a further infinite hierarchy of massive higher spin states that provide an ultraviolet completion). They extend to give formulae for loop amplitudes[33][34] and can be defined on curved backgrounds.[35]



The twistor correspondence


Denote Minkowski space by M{displaystyle mathbb {M} }mathbb {M} , with coordinates xa=(t,x,y,z){displaystyle x^{a}=(t,x,y,z)}{displaystyle x^{a}=(t,x,y,z)} and Lorentzian metric ηab{displaystyle eta _{ab}}eta _{{ab}} signature (1,3){displaystyle (1,3)}(1,3). Introduce 2-component spinor indices A=0,1,A′=0′,1′{displaystyle A=0,1,,A'=0',1'}{displaystyle A=0,1,,A'=0',1'}, and set



xAA′=12(t−zx+iyx−iyt+z).{displaystyle x^{AA'}={frac {1}{sqrt {2}}}{begin{pmatrix}t-z&x+iy\x-iy&t+zend{pmatrix}}.}

{displaystyle x^{AA'}={frac {1}{sqrt {2}}}{begin{pmatrix}t-z&x+iy\x-iy&t+zend{pmatrix}}.}
Non-projective twistor space T{displaystyle mathbb {T} }mathbb {T} is a four-dimensional complex vector space with coordinates are denoted by =(ωA,πA′){displaystyle Z^{alpha }=(omega ^{A},pi _{A'})}Z^{alpha}=(omega^{A},pi_{A'}) where ωA{displaystyle omega ^{A}}omega^A and πA′{displaystyle pi _{A'}}pi_{A'} are two constant Weyl spinors. The hermitian form can be expressed by defining a complex conjugation from T{displaystyle mathbb {T} }mathbb {T} to its dual T∗{displaystyle mathbb {T} ^{*}}{displaystyle mathbb {T} ^{*}} by α=(π¯A,ω¯A′){displaystyle {bar {Z}}_{alpha }=({bar {pi }}_{A},{bar {omega }}^{A'})}{displaystyle {bar {Z}}_{alpha }=({bar {pi }}_{A},{bar {omega }}^{A'})} so that the Hermitian form can be expressed as

α¯A+ω¯A′πA′.{displaystyle Z^{alpha }{bar {Z}}_{alpha }=omega ^{A}{bar {pi }}_{A}+{bar {omega }}^{A'}pi _{A'},.}{displaystyle Z^{alpha }{bar {Z}}_{alpha }=omega ^{A}{bar {pi }}_{A}+{bar {omega }}^{A'}pi _{A'},.}

This together with the holomorphic volume form, εαβγδdZβdZγdZδ{displaystyle varepsilon _{alpha beta gamma delta }Z^{alpha }dZ^{beta }wedge dZ^{gamma }wedge dZ^{delta }}{displaystyle varepsilon _{alpha beta gamma delta }Z^{alpha }dZ^{beta }wedge dZ^{gamma }wedge dZ^{delta }} is invariant under the group SU(2,2), a quadruple cover of the conformal group C(1,3) of compactified Minkowski spacetime.


Points in Minkowski space are related to subspaces of twistor space through the incidence relation


ωA=ixAA′πA′.{displaystyle omega ^{A}=ix^{AA'}pi _{A'}.}<br />
omega^{A}=ix^{AA'}pi_{A'}.<br />

The incidence relation is preserved under an overall re-scaling of the twistor, so usually one works in projective twistor space PT{displaystyle mathbb {PT} }mathbb{PT}, which is isomorphic as a complex manifold to CP3{displaystyle mathbb {CP} ^{3}}mathbb{CP}^3. A point x∈M{displaystyle xin M}xin M thereby determines a line CP1{displaystyle mathbb {CP} ^{1}}mathbb{CP}^1 in PT{displaystyle mathbb {PT} }mathbb{PT} parametrised by πA′{displaystyle pi _{A'}}pi_{A'}. A twistor {displaystyle Z^{alpha }}Z^alpha is easiest understood in space-time for complex values of the coordinates where it defines a totally null two-plane that is self-dual. If x{displaystyle x}x is taken to be real, then if α{displaystyle Z^{alpha }{bar {Z}}_{alpha }}{displaystyle Z^{alpha }{bar {Z}}_{alpha }} vanishes, then x{displaystyle x}x lies on a light ray, whereas if iα{displaystyle Z^{alpha }{bar {Z}}_{alpha }}{displaystyle Z^{alpha }{bar {Z}}_{alpha }} is non-vanishing, there are no solutions, and indeed then {displaystyle Z^{alpha }}{displaystyle Z^{alpha }} corresponds to a massless particle with spin that are not localised in real space-time.



Variations



Supertwistors


Supertwistors are a supersymmetric extension of twistors introduced by Alan Ferber in 1978.[36] Non-projective twistor space is extended by fermionic coordinates where N{displaystyle {mathcal {N}}}{mathcal {N}} is the number of supersymmetries so that a twistor is now given by A,πA′,ηi),i=1,…,N{displaystyle (omega ^{A},pi _{A'},eta ^{i}),i=1,ldots ,{mathcal {N}}}{displaystyle (omega ^{A},pi _{A'},eta ^{i}),i=1,ldots ,{mathcal {N}}} with ηi{displaystyle eta ^{i}}eta ^{i} anticommuting. The super conformal group SU(2,2|N){displaystyle SU(2,2|{mathcal {N}})}{displaystyle SU(2,2|{mathcal {N}})} naturally acts on this space and a supersymmetric version of the Penrose transform takes cohomology classes on supertwistor space to massless supersymmetric multiplets on super Minkowski space. The N=4{displaystyle {mathcal {N}}=4}{mathcal {N}}=4 case provides the target for Penrose's original twistor-string and the N=8{displaystyle {mathcal {N}}=8}{displaystyle {mathcal {N}}=8} case is that for Skinner's supergravity generalisation.



Hyper-Kähler manifolds


Hyperkähler manifolds of dimension 4k{displaystyle 4k}{displaystyle 4k} also admit a twistor correspondence with a twistor space of complex dimension 2k+1{displaystyle 2k+1}2k+1.



Palatial twistor theory


The nonlinear graviton construction encodes only anti-self-dual, i.e., left-handed fields. A first step towards the problem of modifying twistor space so as to encode a general gravitational field is to ask to encode right handed fields. Infinitesimally, these are encoded in twistor functions or cohomology classes of homogeneity –6. The task of using such twistor functions in a fully nonlinear way so as to obtain a right-handed non-linear graviton has been referred to as the (gravitational) googly problem (the word "googly" is a term used in the game of cricket for a ball bowled with right-handed helicity using the apparent action that would normally give rise to left-handed helicity).[37] The most recent proposal in this direction by Penrose in 2015 was based on noncommutative geometry on twistor space and referred to as palatial twistor theory[38] (named after Buckingham Palace, where Michael Atiyah suggested to Penrose the use of a type of "noncommutative algebra", an important component of the theory).[39][40]



See also



  • Background independence

  • Complex spacetime

  • History of loop quantum gravity

  • Penrose transform

  • Spin network

  • Twistor strings



Notes





  1. ^ Penrose, R. (1967). "Twistor Algebra". Journal of Mathematical Physics. 8 (2): 345–366. Bibcode:1967JMP.....8..345P. doi:10.1063/1.1705200..mw-parser-output cite.citation{font-style:inherit}.mw-parser-output .citation q{quotes:"""""""'""'"}.mw-parser-output .citation .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-maint{display:none;color:#33aa33;margin-left:0.3em}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}


  2. ^ Penrose, R.; MacCallum, M.A.H. (1973). "Twistor theory: An approach to the quantisation of fields and space-time". Physics Reports. 6 (4): 241–315. Bibcode:1973PhR.....6..241P. doi:10.1016/0370-1573(73)90008-2.


  3. ^ Penrose, Roger; Rindler, Wolfgang (1986). Spinors and Space-Time. Cambridge University Press. pp. Appendix. doi:10.1017/cbo9780511524486. ISBN 9780521252676.


  4. ^ Hughston, L. P.; Mason, L. J. (1988). "A generalised Kerr-Robinson theorem". Classical and Quantum Gravity. 5 (2): 275. Bibcode:1988CQGra...5..275H. doi:10.1088/0264-9381/5/2/007. ISSN 0264-9381.


  5. ^ Penrose, R. (1976b). "Non-linear gravitons and curved twistor theory." Gen. Rel. Grav. 7, 31–52.


  6. ^ Ward, R.S. (1977). "On self-dual gauge fields". Physics Letters A. 61 (2): 81–82. Bibcode:1977PhLA...61...81W. doi:10.1016/0375-9601(77)90842-8.


  7. ^ 1951-, Ward, R. S. (Richard Samuel) (1990). Twistor geometry and field theory. Wells, R. O. (Raymond O'Neil), 1940-. Cambridge [England]: Cambridge University Press. ISBN 978-0521422680. OCLC 17260289.


  8. ^ Mason, Lionel J; Woodhouse, Nicholas M J (1996). Integrability, self-duality, and twistor theory. Oxford: Clarendon Press. ISBN 9780198534983. OCLC 34545252.


  9. ^ Dunajski, Maciej (2010). Solitons, instantons, and twistors. Oxford: Oxford University Press. ISBN 9780198570622. OCLC 507435856.


  10. ^ Atiyah, M.F.; Hitchin, N.J.; Drinfeld, V.G.; Manin, Yu.I. (1978). "Construction of instantons". Physics Letters A. 65 (3): 185–187. Bibcode:1978PhLA...65..185A. doi:10.1016/0375-9601(78)90141-x.


  11. ^ Witten, Edward (1978). "An interpretation of classical Yang-Mills theory". Physics Letters B. 77 (4–5): 394–398. Bibcode:1978PhLB...77..394W. doi:10.1016/0370-2693(78)90585-3.


  12. ^ Isenberg, James; Yasskin, Philip B.; Green, Paul S. (1978). "Non-self-dual gauge fields". Physics Letters B. 78 (4): 462–464. Bibcode:1978PhLB...78..462I. doi:10.1016/0370-2693(78)90486-0.


  13. ^ Witten, Edward (6 October 2004). "Perturbative Gauge Theory as a String Theory in Twistor Space". Communications in Mathematical Physics. 252 (1–3): 189–258. arXiv:hep-th/0312171. Bibcode:2004CMaPh.252..189W. doi:10.1007/s00220-004-1187-3.


  14. ^ Roiban, Radu; Spradlin, Marcus; Volovich, Anastasia (2004-07-30). "Tree-level S matrix of Yang-Mills theory". Physical Review D. 70 (2): 026009. arXiv:hep-th/0403190. Bibcode:2004PhRvD..70b6009R. doi:10.1103/PhysRevD.70.026009.


  15. ^ Berkovits, Nathan; Witten, Edward (2004). "Conformal supergravity in twistor-string theory". Journal of High Energy Physics. 2004 (8): 009. arXiv:hep-th/0406051. Bibcode:2004JHEP...08..009B. doi:10.1088/1126-6708/2004/08/009. ISSN 1126-6708.


  16. ^ Cachazo, Freddy; Svrcek, Peter; Witten, Edward (2004). "MHV vertices and tree amplitudes in gauge theory". Journal of High Energy Physics. 2004 (9): 006. arXiv:hep-th/0403047. Bibcode:2004JHEP...09..006C. doi:10.1088/1126-6708/2004/09/006. ISSN 1126-6708.


  17. ^ Adamo, Tim; Bullimore, Mathew; Mason, Lionel; Skinner, David (2011). "Scattering amplitudes and Wilson loops in twistor space". Journal of Physics A: Mathematical and Theoretical. 44 (45): 454008. arXiv:1104.2890. Bibcode:2011JPhA...44S4008A. doi:10.1088/1751-8113/44/45/454008.


  18. ^ Britto, Ruth; Cachazo, Freddy; Feng, Bo; Witten, Edward (2005-05-10). "Direct Proof of the Tree-Level Scattering Amplitude Recursion Relation in Yang-Mills Theory". Physical Review Letters. 94 (18): 181602. arXiv:hep-th/0501052. Bibcode:2005PhRvL..94r1602B. doi:10.1103/PhysRevLett.94.181602. PMID 15904356.


  19. ^ Mason, Lionel; Skinner, David (2010-01-01). "Scattering amplitudes and BCFW recursion in twistor space". Journal of High Energy Physics. 2010 (1): 64. arXiv:0903.2083. Bibcode:2010JHEP...01..064M. doi:10.1007/JHEP01(2010)064. ISSN 1029-8479.


  20. ^ Arkani-Hamed, N.; Cachazo, F.; Cheung, C.; Kaplan, J. (2010-03-01). "The S-matrix in twistor space". Journal of High Energy Physics. 2010 (3): 110. arXiv:0903.2110. Bibcode:2010JHEP...03..110A. doi:10.1007/JHEP03(2010)110. ISSN 1029-8479.


  21. ^ Arkani-Hamed, N.; Cachazo, F.; Cheung, C.; Kaplan, J. (2010-03-01). "A duality for the S matrix". Journal of High Energy Physics. 2010 (3): 20. arXiv:0907.5418. Bibcode:2010JHEP...03..020A. doi:10.1007/JHEP03(2010)020. ISSN 1029-8479.


  22. ^ Mason, Lionel; Skinner, David (2009). "Dual superconformal invariance, momentum twistors and Grassmannians". Journal of High Energy Physics. 2009 (11): 045. arXiv:0909.0250. Bibcode:2009JHEP...11..045M. doi:10.1088/1126-6708/2009/11/045. ISSN 1126-6708.


  23. ^ Hodges, Andrew (2013-05-01). "Eliminating spurious poles from gauge-theoretic amplitudes". Journal of High Energy Physics. 2013 (5): 135. Bibcode:2013JHEP...05..135H. doi:10.1007/JHEP05(2013)135. ISSN 1029-8479.


  24. ^ Arkani-Hamed, Nima; Bourjaily, Jacob L.; Cachazo, Freddy; Goncharov, Alexander B.; Postnikov, Alexander; Trnka, Jaroslav (2012-12-21). "Scattering Amplitudes and the Positive Grassmannian". arXiv:1212.5605 [hep-th].


  25. ^ Cachazo, Freddy; Skinner, David (2013-04-16). "Gravity from Rational Curves in Twistor Space". Physical Review Letters. 110 (16): 161301. arXiv:1207.0741. Bibcode:2013PhRvL.110p1301C. doi:10.1103/PhysRevLett.110.161301. PMID 23679592.


  26. ^ Skinner, David (2013-01-04). "Twistor Strings for N=8 Supergravity". arXiv:1301.0868 [hep-th].


  27. ^ Cachazo, Freddy; He, Song; Yuan, Ellis Ye (2014-07-01). "Scattering of massless particles: scalars, gluons and gravitons". Journal of High Energy Physics. 2014 (7): 33. arXiv:1309.0885. Bibcode:2014JHEP...07..033C. doi:10.1007/JHEP07(2014)033. ISSN 1029-8479.


  28. ^ Cachazo, Freddy; He, Song; Yuan, Ellis Ye (2015-07-01). "Scattering equations and matrices: from Einstein to Yang-Mills, DBI and NLSM". Journal of High Energy Physics. 2015 (7): 149. arXiv:1412.3479. Bibcode:2015JHEP...07..149C. doi:10.1007/JHEP07(2015)149. ISSN 1029-8479.


  29. ^ Mason, Lionel; Skinner, David (2014-07-01). "Ambitwistor strings and the scattering equations". Journal of High Energy Physics. 2014 (7): 48. arXiv:1311.2564. Bibcode:2014JHEP...07..048M. doi:10.1007/JHEP07(2014)048. ISSN 1029-8479.


  30. ^ Berkovits, Nathan (2014-03-01). "Infinite tension limit of the pure spinor superstring". Journal of High Energy Physics. 2014 (3): 17. arXiv:1311.4156. Bibcode:2014JHEP...03..017B. doi:10.1007/JHEP03(2014)017. ISSN 1029-8479.


  31. ^ Geyer, Yvonne; Lipstein, Arthur E.; Mason, Lionel (2014-08-19). "Ambitwistor Strings in Four Dimensions". Physical Review Letters. 113 (8): 081602. arXiv:1404.6219. Bibcode:2014PhRvL.113h1602G. doi:10.1103/PhysRevLett.113.081602. PMID 25192087.


  32. ^ Casali, Eduardo; Geyer, Yvonne; Mason, Lionel; Monteiro, Ricardo; Roehrig, Kai A. (2015-11-01). "New ambitwistor string theories". Journal of High Energy Physics. 2015 (11): 38. arXiv:1506.08771. Bibcode:2015JHEP...11..038C. doi:10.1007/JHEP11(2015)038. ISSN 1029-8479.


  33. ^ Adamo, Tim; Casali, Eduardo; Skinner, David (2014-04-01). "Ambitwistor strings and the scattering equations at one loop". Journal of High Energy Physics. 2014 (4): 104. arXiv:1312.3828. Bibcode:2014JHEP...04..104A. doi:10.1007/JHEP04(2014)104. ISSN 1029-8479.


  34. ^ Geyer, Yvonne; Mason, Lionel; Monteiro, Ricardo; Tourkine, Piotr (2015-09-16). "Loop Integrands for Scattering Amplitudes from the Riemann Sphere". Physical Review Letters. 115 (12): 121603. arXiv:1507.00321. Bibcode:2015PhRvL.115l1603G. doi:10.1103/PhysRevLett.115.121603. PMID 26430983.


  35. ^ Adamo, Tim; Casali, Eduardo; Skinner, David (2015-02-01). "A worldsheet theory for supergravity". Journal of High Energy Physics. 2015 (2): 116. arXiv:1409.5656. Bibcode:2015JHEP...02..116A. doi:10.1007/JHEP02(2015)116. ISSN 1029-8479.


  36. ^ Ferber, A. (1978), "Supertwistors and conformal supersymmetry", Nuclear Physics B, 132 (1): 55–64, Bibcode:1978NuPhB.132...55F, doi:10.1016/0550-3213(78)90257-2.


  37. ^ Penrose 2004, p. 1000.


  38. ^ Penrose R. (2015). "Palatial twistor theory and the twistor googly problem." Phil. Trans. R. Soc. A 373: 20140237.


  39. ^ Michael Atiyah's Imaginative State of Mind – Quanta Magazine


  40. ^ The underlying twistor structure in palatial twistor theory was modeled not on the twistor space but on the non-commutative holomorphic twistor quantum algebra.




References



  • Roger Penrose, The Road to Reality, Alfred A. Knopf, 2004.


Further reading



  • Atiyah, M., Dunajski, M., and Mason, L. J. (2017). "Twistor theory at fifty: from contour integrals to twistor strings". Proc. R. Soc. A473 (2206): 20170530. doi:10.1098/rspa.2017.0530. ISSN 1364-5021.

  • Baird, P., "An Introduction to Twistors."



  • Huggett, S. and Tod, K. P. (1994). An Introduction to Twistor Theory, second edition. Cambridge University Press. 
    ISBN 9780521456890. OCLC 831625586.

  • Hughston, L. P. (1979) Twistors and Particles. Springer Lecture Notes in Physics 97, Springer-Verlag.
    ISBN 978-3-540-09244-5.

  • Hughston, L. P. and Ward, R. S., eds (1979) Advances in Twistor Theory. Pitman.
    ISBN 0-273-08448-8.

  • Mason, L. J. and Hughston, L. P., eds (1990) Further Advances in Twistor Theory, Volume I: The Penrose Transform and its Applications. Pitman Research Notes in Mathematics Series 231, Longman Scientific and Technical.
    ISBN 0-582-00466-7.

  • Mason, L. J., Hughston, L. P., and Kobak, P. K., eds (1995) Further Advances in Twistor Theory, Volume II: Integrable Systems, Conformal Geometry, and Gravitation. Pitman Research Notes in Mathematics Series 232, Longman Scientific and Technical.
    ISBN 0-582-00465-9.

  • Mason, L. J., Hughston, L. P., Kobak, P. K., and Pulverer, K., eds (2001) Further Advances in Twistor Theory, Volume III: Curved Twistor Spaces. Research Notes in Mathematics 424, Chapman and Hall/CRC.
    ISBN 1-58488-047-3.


  • Penrose, Roger (1967), "Twistor Algebra", Journal of Mathematical Physics, 8 (2): 345–366, Bibcode:1967JMP.....8..345P, doi:10.1063/1.1705200, MR 0216828, archived from the original on 2013-01-12


  • Penrose, Roger (1968), "Twistor Quantisation and Curved Space-time", International Journal of Theoretical Physics, 1: 61–99, Bibcode:1968IJTP....1...61P, doi:10.1007/BF00668831


  • Penrose, Roger (1969), "Solutions of the Zero‐Rest‐Mass Equations", Journal of Mathematical Physics, 10 (1): 38–39, Bibcode:1969JMP....10...38P, doi:10.1063/1.1664756, archived from the original on 2013-01-12


  • Penrose, Roger (1977), "The Twistor Programme", Reports on Mathematical Physics, 12 (1): 65–76, Bibcode:1977RpMP...12...65P, doi:10.1016/0034-4877(77)90047-7, MR 0465032

  • Penrose, Roger (1999) "The Central Programme of Twistor Theory," Chaos, Solitons and Fractals 10: 581–611.


  • Witten, Edward (2004), "Perturbative Gauge Theory as a String Theory in Twistor Space", Communications in Mathematical Physics, 252 (1–3): 189–258, arXiv:hep-th/0312171, Bibcode:2004CMaPh.252..189W, doi:10.1007/s00220-004-1187-3



External links




  • Penrose, Roger (1999), "Einstein's Equation and Twistor Theory: Recent Developments"

  • Penrose, Roger; Hadrovich, Fedja. "Twistor Theory."

  • Dunajski, Maciej, "Twistor Theory and Differential Equations."

  • Hadrovich, Fedja, "Twistor Primer."


  • Andrew Hodges, "Twistor Theory and the Twistor Programme." Includes many links.

  • Huggett, Stephen (2005), "The Elements of Twistor Theory."


  • Richard Jozsa (1976), "Applications of Sheaf Cohomology in Twistor Theory."

  • Mason, L. J., "The twistor programme and twistor strings:From twistor strings to quantum gravity?"

  • Sämann, Christian (2006), "Aspects of Twistor Geometry and Supersymmetric Field Theories within Superstring Theory."

  • Sparling, George (1999), "On Time Asymmetry."

  • Spradlin, Marcus (2006), "Progress and Prospects In Twistor String Theory."

  • MathWorld: Twistors.

  • Universe Review: "Twistor Theory."


  • Twistor newsletter archives.













Popular posts from this blog

Bressuire

Vorschmack

Quarantine