Xenorhabdus




































Xenorhabdus

Scientific classification
Kingdom:

Bacteria
Phylum:

Proteobacteria
Class:

Gammaproteobacteria
Order:

Enterobacteriales
Family:

Enterobacteriaceae
Genus:

Xenorhabdus
Thomas & Poinar, 1979

Species

Xenorhabdus beddingii

Xenorhabdus bovienii

Xenorhabdus budapestensis

Xenorhabdus cabanillasii

Xenorhabdus doucetiae

Xenorhabdus eapokensis[1]
Xenorhabdus ehlersii

Xenorhabdus griffiniae

Xenorhabdus hominickii

Xenorhabdus indica

Xenorhabdus innexi

Xenorhabdus ishibashii

Xenorhabdus japonica

Xenorhabdus khoisanae

Xenorhabdus koppenhoeferi

Xenorhabdus kozodoii

Xenorhabdus magdalenensis

Xenorhabdus mauleonii

Xenorhabdus miraniensis

Xenorhabdus nematophila

Xenorhabdus poinarii

Xenorhabdus romanii

Xenorhabdus stockiae

Xenorhabdus szentirmaii

Xenorhabdus thuongxuanensis[1]
Xenorhabdus vietnamensis



Xenorhabdus is a genus of motile, gram-negative bacteria from the family of the Enterobacteriaceae. It has the particularity that all the species of the genus live in symbiosis with soil entomopathogenic nematodes from the genus Steinernema.[2]


Although no free-living forms of Xenorhabdus have ever been isolated outside of the nematode host, the benefits for the bacteria are still unknown.
However, it has been demonstrated that the nematode can't establish within his insect host without the bacteria.[3]


The tripartite Xenorhabdus-nematode-insect interaction represents a model system in which both mutualistic and pathogenic processes can be studied in a single bacterial species.
In laboratory, some species are virulent directly injected within the insect host, whereas others species need the nematode to penetrate into the insect.[3]




Contents






  • 1 Lifecycle


  • 2 Phylogeny


  • 3 Biological pest control


  • 4 Perspectives


  • 5 References


  • 6 Bibliography


  • 7 External links





Lifecycle



  1. In the non-infestant-stage nematode living in the soil, Xenorhabdus spp. are carried in a specialized region of the intestine, termed the receptacle.

  2. At the third-stage of development, the infective juvenile (IJs) invade the hemocoel of susceptible insect hosts.

  3. The bacteria are released in the insect hemocoel, where they overcome the insect's defense systems and produce numerous virulence factors such as hemolysin and cytotoxin. They participate in suppressing insect immunity and killing the host.

  4. The bacteria proliferate to high levels in the insect cadaver and produce diverse antimicrobial compounds that suppress the growth of antagonistic microorganisms. Xenorhabdus spp. also secrete an array of exoenzymes that stimulate macromolecular degradation, the products of which, together with the bacteria themselves, are thought to provide a nutrient base for nematode growth and reproduction.

  5. When nematode numbers become high and nutrients become limiting in the insect cadaver, nematode progeny re-associate with bacteria and differentiate into colonized, non-feeding IJs that emerge into the soil to forage for new hosts.



Phylogeny



Biological pest control


The mutualistic association between Xenorhabdus and Steinernema represent an insectidical complex, active against a large range of insect pests.
Indeed, the complex is used in biological pest control, and is very efficient against insects such as Spodoptera exigua (Lepidoptera), Cydia pomonella (Lepidoptera), Leptinotarsa decemlineata (Coleoptera), family Tipulidae (Diptera). These bacteria inhabit the gut of the Asian corn borer, a moth pest of maize in East Asia, and kills it within 48 hours.
Xenorhabdus nematofila is the most widely used species in biological control, in association with Steinernema carpocapse and Steinernema feltiae.


The pathogenicity of the complex is "species-specific", which means that the complex can only be active against a specific range of insects.


The Steinernema-Xenorhabdus association is currently sold as biocontrol agent by private companies, like Biobest, SUMI AGRO, and Biosafe.



Perspectives


A study carried out by Furgani G. & Al[4]
suggests that the antibiotic compounds produced by Xenorhabdus to preserve the insect cadaver from others bacteria may be used in the aim of controlling mastitis caused by bacteria. Indeed, Xenorhabdus budapestensis, X. szentirmaii and X. nematofila appear to be efficient against pathogens such as Staphylocuccus aureus and Escherichia coli.



References


As of this edit, this article uses content from "The Entomopathogenic Bacterial Endosymbionts Xenorhabdus and Photorhabdus: Convergent Lifestyles from Divergent Genomes", which is licensed in a way that permits reuse under the Creative Commons Attribution-ShareAlike 3.0 Unported License, but not under the GFDL. All relevant terms must be followed.





  1. ^ ab Kämpfer, P; Tobias, NJ; Ke, LP; Bode, HB; Glaeser, SP (May 2017). "Xenorhabdus thuongxuanensis sp. nov. and Xenorhabdus eapokensis sp. nov., isolated from Steinernema species". International Journal of Systematic and Evolutionary Microbiology. 67 (5): 1107–1114. doi:10.1099/ijsem.0.001770. PMID 28056225..mw-parser-output cite.citation{font-style:inherit}.mw-parser-output q{quotes:"""""""'""'"}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-limited a,.mw-parser-output .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}


  2. ^ John M. Chaston; Garret Suen; Sarah L. Tucker; Aaron W. Andersen; Archna Bhasin; Edna Bode; Helge B. Bode; Alexander O. Brachmann; et al. (2011-11-18). "The Entomopathogenic Bacterial Endosymbionts Xenorhabdus and Photorhabdus: Convergent Lifestyles from Divergent Genomes". PLoS ONE. 6 (11): e27909. doi:10.1371/journal.pone.0027909. PMC 3220699. PMID 22125637. Retrieved 2011-11-27.


  3. ^ ab Gaudriault S., Ogier J.C.; Pagès S.; Bisch G.; Chiapello H.; Médigue C.; Rouy Z.; Teyssier C.; Vincent S.; Tailliez P.; Guivaudan A. (2014-07-25). "Attenued Virulence And Genomic Reductive Evolution In The Entomopathogenic Bacterial Symbiont Species, Xenorhabdus poinarii". Genome Biology and Evolution. 6 (6): 1495–1513. doi:10.1093/gbe/evu119. PMC 4079199. PMID 24904010. Retrieved 2014-05-30.


  4. ^ Wolf S.L., Furgani G.; Böszörményi E.; Fodor A.; Máthé-Fodor A.; Forst S.; Hogan J.S.; Katona Z.; Klein M.G.; Stackebrandt E.; Szentirmai A.; Sztaricskai F. (2007-08-25). "Xenorhabdus Antibiotics: a comparative analysis and potential utility for controlling mastisis caused by bacteria". Journal of Applied Microbiology. 104 (2008): 745–758. doi:10.1111/j.1365-2672.2007.03613.x. Retrieved 2007-03-10.




Bibliography



  • Goodrich-Blair H. & Clarke D.J. (2007). Mutualism and pathogenesis in Xenorhabdus and Photorhabdus: two roads for the same destination. Molecular Microbiology (2007) 64(2), 260-268. doi: 10.1111/j.1365-2958.2007.05671.x

  • Sicard M. & Al (2004). When mutualists are pathogens: an experimental study of the symbioses between Steinernema (entomopathogenic nematodes) and Xenorhabdus (bacteria). Genome Biology And Evolution 17(2004)985-993. doi: 10.1111/j.1420-9101.2004.00748.x

  • Pilar F. & Al (2006). Phylogenetic relationships of Bacteria with special reference to endosymbionts and enteric species. The Prokaryotes, pp 41–59.



External links



  • Xenorhabdus, List Of species

  • Nematodes as Biological Control Agents of Insects

  • Parasitic Nematodes Home Page









Popular posts from this blog

Xamarin.iOS Cant Deploy on Iphone

Glorious Revolution

Dulmage-Mendelsohn matrix decomposition in Python