Sulfur dioxide























































































































































































































Sulfur dioxide

Skeletal formula sulfur dioxide with assorted dimensions

Spacefill model of sulfur dioxide

The Lewis structure of sulfur dioxide (SO2), showing unshared electron pairs.
Names

IUPAC name
Sulfur dioxide

Other names
Sulfurous anhydride

Sulfur(IV) oxide

Identifiers

CAS Number



  • 7446-09-5 ☑Y


3D model (JSmol)


  • Interactive image


Beilstein Reference

3535237

ChEBI


  • CHEBI:18422 ☑Y


ChEMBL


  • ChEMBL1235997 ☒N


ChemSpider


  • 1087 ☑Y


ECHA InfoCard

100.028.359

EC Number
231-195-2

E number
E220 (preservatives)

Gmelin Reference

1443

KEGG


  • D05961 ☑Y


MeSH

Sulfur+dioxide


PubChem CID


  • 1119


RTECS number
WS4550000

UNII


  • 0UZA3422Q4 ☑Y


UN number
1079, 2037




Properties

Chemical formula


SO
2


Molar mass
64.066 g mol−1
Appearance
Colorless gas

Odor
Pungent; similar to a just-struck match[1]

Density
2.6288 kg m−3

Melting point
−72 °C; −98 °F; 201 K

Boiling point
−10 °C (14 °F; 263 K)

Solubility in water

94 g/L[2]
forms sulfurous acid

Vapor pressure
237.2 kPa

Acidity (pKa)
1.81

Basicity (pKb)
12.19


Magnetic susceptibility (χ)

−18.2·10−6 cm3/mol

Viscosity
0.403 cP (at 0 °C)
Structure

Point group


C2v

Coordination geometry

Digonal

Molecular shape

Dihedral

Dipole moment

1.62 D
Thermochemistry


Std molar
entropy (So298)

248.223 J K−1 mol−1


Std enthalpy of
formation (ΔfHo298)

−296.81 kJ mol−1
Hazards

GHS pictograms

The corrosion pictogram in the Globally Harmonized System of Classification and Labelling of Chemicals (GHS)The skull-and-crossbones pictogram in the Globally Harmonized System of Classification and Labelling of Chemicals (GHS)

GHS signal word
Danger

GHS hazard statements


H314, H331[3]

NFPA 704



Flammability code 0: Will not burn. E.g., water
Health code 3: Short exposure could cause serious temporary or residual injury. E.g., chlorine gas
Reactivity code 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g., liquid nitrogen
Special hazards (white): no code
NFPA 704 four-colored diamond


0


3


0


Lethal dose or concentration (LD, LC):


LC50 (median concentration)

3000 ppm (mouse, 30 min)
2520 ppm (rat, 1 hr)[5]


LCLo (lowest published)

993 ppm (rat, 20 min)
611 ppm (rat, 5 hr)
764 ppm (mouse, 20 min)
1000 ppm (human, 10 min)
3000 ppm (human, 5 min)[5]
US health exposure limits (NIOSH):


PEL (Permissible)

TWA 5 ppm (13 mg/m3)[4]


REL (Recommended)

TWA 2 ppm (5 mg/m3) ST 5 ppm (13 mg/m3)[4]


IDLH (Immediate danger)

100 ppm[4]
Related compounds

Related sulfur oxides


Sulfur monoxide
Sulfur trioxide

Related compounds


Ozone

Selenium dioxide
Sulfurous acid
Tellurium dioxide



Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).


☒N verify (what is ☑Y☒N ?)

Infobox references



Sulfur dioxide (also sulphur dioxide in British English) is the chemical compound with the formula SO
2
. It is a toxic gas with a burnt match smell. It is released naturally by volcanic activity and is produced as a by-product of the burning of fossil fuels contaminated with sulfur compounds and copper extraction.




Contents






  • 1 Structure and bonding


  • 2 Occurrence


  • 3 Production


    • 3.1 Combustion routes


    • 3.2 Reduction of higher oxides


    • 3.3 From sulfite




  • 4 Reactions


    • 4.1 Industrial reactions


    • 4.2 Laboratory reactions




  • 5 Uses


    • 5.1 Precursor to sulfuric acid


    • 5.2 As a preservative


    • 5.3 In winemaking


    • 5.4 As a reducing agent


    • 5.5 Biochemical and biomedical roles


    • 5.6 As a refrigerant


    • 5.7 As a reagent and solvent in the laboratory


    • 5.8 Proposed use in climate engineering




  • 6 As an air pollutant


  • 7 Safety


    • 7.1 Inhalation


    • 7.2 Ingestion




  • 8 See also


  • 9 References


  • 10 External links





Structure and bonding


SO2 is a bent molecule with C2vsymmetry point group.
A valence bond theory approach considering just s and p orbitals would describe the bonding in terms of resonance between two resonance structures.




Two resonance structures of sulfur dioxide


The sulfur–oxygen bond has a bond order of 1.5. There is support for this simple approach that does not invoke d orbital participation.[6]
In terms of electron-counting formalism, the sulfur atom has an oxidation state of +4 and a formal charge of +1.



Occurrence




The blue auroral glows of Io's upper atmosphere are caused by volcanic sulfur dioxide.


It is found on Earth and exists in very small concentrations and in the atmosphere at about 1 ppm.[7][8][clarification needed]


On other planets, it can be found in various concentrations, the most significant being the atmosphere of Venus, where it is the third-most significant atmospheric gas at 150 ppm. There, it condenses to form clouds, and is a key component of chemical reactions in the planet's atmosphere and contributes to global warming.[9] It has been implicated as a key agent in the warming of early Mars, with estimates of concentrations in the lower atmosphere as high as 100 ppm,[10] though it only exists in trace amounts. On both Venus and Mars, as on Earth, its primary source is thought to be volcanic. The atmosphere of Io is 90% sulfur dioxide[11] and trace amounts are thought to also exist in the atmosphere of Jupiter.


As an ice, it is thought to exist in abundance on the Galilean moons—as sublimating ice or frost on the trailing hemisphere of Io, a natural satellite of Jupiter[12] and in the crust and mantle of Europa, Ganymede, and Callisto, possibly also in liquid form and readily reacting with water.[13]



Production


Sulfur dioxide is primarily produced for sulfuric acid manufacture (see contact process). In the United States in 1979, 23.6 million tonnes (26,014,547 US short tons) of sulfur dioxide were used in this way, compared with 150 thousand tonnes (165,347 US short tons) used for other purposes. Most sulfur dioxide is produced by the combustion of elemental sulfur. Some sulfur dioxide is also produced by roasting pyrite and other sulfide ores in air.[14]




File:03. Горење на сулфур во атмосфера од кислород.webmPlay media

An experiment showing burning of sulfur in oxygen. A flow-chamber joined to a gas washing bottle (filled with a solution of methyl orange) is being used. The product is sulfur dioxide (SO2) with some traces of sulfur trioxide (SO3). The "smoke" that exits the gas washing bottle is, in fact, a sulfuric acid fog generated in a reaction.



Combustion routes


Sulfur dioxide is the product of the burning of sulfur or of burning materials that contain sulfur:


S + O2 → SO2, ΔH = −297 kJ/mol

To aid combustion, liquefied sulfur (140–150 °C, 284-302 °F) is sprayed through an atomizing nozzle to generate fine drops of sulfur with a large surface area. The reaction is exothermic, and the combustion produces temperatures of 1000–1600 °C, 1832-2912 °F). The significant amount of heat produced is recovered by steam generation that can subsequently be converted to electricity.[14]


The combustion of hydrogen sulfide and organosulfur compounds proceeds similarly. For example:


2 H2S + 3 O2 → 2 H2O + 2 SO2

The roasting of sulfide ores such as pyrite, sphalerite, and cinnabar (mercury sulfide) also releases SO2:[15]



4 FeS2 + 11 O2 → 2 Fe2O3 + 8 SO2

2 ZnS + 3 O2 → 2 ZnO + 2 SO2

HgS + O2 → Hg + SO2

4 FeS + 7O2 → 2 Fe2O3 + 4 SO2


A combination of these reactions is responsible for the largest source of sulfur dioxide, volcanic eruptions. These events can release millions of tonnes of SO2.



Reduction of higher oxides


Sulfur dioxide can also be a byproduct in the manufacture of calcium silicate cement; CaSO4 is heated with coke and sand in this process:


2 CaSO4 + 2 SiO2 + C → 2 CaSiO3 + 2 SO2 + CO2

Until the 1970s, commercial quantities of sulfuric acid and cement were produced by this process in Whitehaven, England. Upon being mixed with shale or marl, and roasted, the sulfate liberated sulfur dioxide gas, used in sulfuric acid production, the reaction also produced calcium silicate, a precursor in cement production.[16]


On a laboratory scale, the action of hot concentrated sulfuric acid on copper turnings produces sulfur dioxide.


Cu + 2 H2SO4 → CuSO4 + SO2 + 2 H2O


From sulfite


Sulfite results from the reaction of aqueous base and sulfur dioxide. The reverse reaction involves acidification of sodium metabisulfite:


H2SO4 + Na2S2O5 → 2 SO2 + Na2SO4 + H2O


Reactions



Industrial reactions


Treatment of basic solutions with sulfur dioxide affords sulfite salts (e.g. sodium sulfite):


SO2 + 2 NaOH → Na2SO3 + H2O

Featuring sulfur in the +4 oxidation state, sulfur dioxide is a reducing agent. It is oxidized by halogens to give the sulfuryl halides, such as sulfuryl chloride:


SO2 + Cl2 → SO2Cl2

Sulfur dioxide is the oxidising agent in the Claus process, which is conducted on a large scale in oil refineries. Here, sulfur dioxide is reduced by hydrogen sulfide to give elemental sulfur:


SO2 + 2 H2S → 3 S + 2 H2O

The sequential oxidation of sulfur dioxide followed by its hydration is used in the production of sulfuric acid.


2 SO2 + 2 H2O + O2 → 2 H2SO4


Laboratory reactions


Sulfur dioxide is one of the few common acidic yet reducing gases. It turns moist litmus pink (being acidic), then white (due to its bleaching effect). It may be identified by bubbling it through a dichromate solution, turning the solution from orange to green (Cr3+ (aq)). It can also reduce ferric ions to ferrous.[citation needed]


Sulfur dioxide can react with certain 1,3-dienes in a cheletropic reaction to form cyclic sulfones. This reaction is exploited on an industrial scale for the synthesis of sulfolane, which is an important solvent in the petrochemical industry.


Cheletropic reaction of butadiene with SO2.svg

Sulfur dioxide can bind to metal ions as a ligand to form metal sulfur dioxide complexes, typically where the transition metal is in oxidation state 0 or +1. Many different bonding modes (geometries) are recognized, but in most cases, the ligand is monodentate, attached to the metal through sulfur, which can be either planar and pyramidal η1.[17]



Uses



Precursor to sulfuric acid


Sulfur dioxide is an intermediate in the production of sulfuric acid, being converted to sulfur trioxide, and then to oleum, which is made into sulfuric acid. Sulfur dioxide for this purpose is made when sulfur combines with oxygen. The method of converting sulfur dioxide to sulfuric acid is called the contact process. Several billion kilograms are produced annually for this purpose.



As a preservative


Sulfur dioxide is sometimes used as a preservative for dried apricots, dried figs, and other dried fruits, owing to its antimicrobial properties, and is called E220[18] when used in this way in Europe. As a preservative, it maintains the colorful appearance of the fruit and prevents rotting. It is also added to sulfured molasses.



In winemaking


Sulfur dioxide was first used in winemaking by the Romans, when they discovered that burning sulfur candles inside empty wine vessels keeps them fresh and free from vinegar smell.[19]


It is still an important compound in winemaking, and is measured in parts per million (ppm) in wine. It is present even in so-called unsulfurated wine at concentrations of up to 10 mg/L.[20] It serves as an antibiotic and antioxidant, protecting wine from spoilage by bacteria and oxidation - a phenomenon that leads to the browning of the wine and a loss of cultivar specific flavors.[21][22] Its antimicrobial action also helps minimize volatile acidity. Wines containing sulfur dioxide are typically labeled with "containing sulfites".


Sulfur dioxide exists in wine in free and bound forms, and the combinations are referred to as total SO2. Binding, for instance to the carbonyl group of acetaldehyde, varies with the wine in question. The free form exists in equilibrium between molecular SO2 (as a dissolved gas) and bisulfite ion, which is in turn in equilibrium with sulfite ion. These equilibria depend on the pH of the wine. Lower pH shifts the equilibrium towards molecular (gaseous) SO2, which is the active form, while at higher pH more SO2 is found in the inactive sulfite and bisulfite forms. The molecular SO2 is active as an antimicrobial and antioxidant, and this is also the form which may be perceived as a pungent odor at high levels. Wines with total SO2 concentrations below 10 ppm do not require "contains sulfites" on the label by US and EU laws. The upper limit of total SO2 allowed in wine in the US is 350 ppm; in the EU it is 160 ppm for red wines and 210 ppm for white and rosé wines. In low concentrations, SO2 is mostly undetectable in wine, but at free SO2 concentrations over 50 ppm, SO2 becomes evident in the smell and taste of wine.[citation needed]


SO2 is also a very important compound in winery sanitation. Wineries and equipment must be kept clean, and because bleach cannot be used in a winery due the risk of cork taint,[23] a mixture of SO2, water, and citric acid is commonly used to clean and sanitize equipment. Ozone (O3) is now used extensively for sanitizing in wineries due to its efficacy, and because it does not affect the wine or most equipment.[24]



As a reducing agent


Sulfur dioxide is also a good reductant. In the presence of water, sulfur dioxide is able to decolorize substances. Specifically, it is a useful reducing bleach for papers and delicate materials such as clothes. This bleaching effect normally does not last very long. Oxygen in the atmosphere reoxidizes the reduced dyes, restoring the color. In municipal wastewater treatment, sulfur dioxide is used to treat chlorinated wastewater prior to release. Sulfur dioxide reduces free and combined chlorine to chloride.[25]


Sulfur dioxide is fairly soluble in water, and by both IR and Raman spectroscopy; the hypothetical sulfurous acid, H2SO3, is not present to any extent. However, such solutions do show spectra of the hydrogen sulfite ion, HSO3, by reaction with water, and it is in fact the actual reducing agent present:


SO2 + H2O ⇌ HSO3 + H+


Biochemical and biomedical roles


Sulfur dioxide is toxic in large amounts. It or its conjugate base bisulfite is produced biologically as an intermediate in both sulfate-reducing organisms and in sulfur-oxidizing bacteria, as well. The role of sulfur dioxide in mammalian biology is not yet well understood.[26] Sulfur dioxide blocks nerve signals from the pulmonary stretch receptors and abolishes the Hering–Breuer inflation reflex.


It was shown that endogenous sulfur dioxide plays a role in diminishing an experimental lung damage caused by oleic acid. Endogenous sulfur dioxide lowered lipid peroxidation, free radical formation, oxidative stress and inflammation during an experimental lung damage. Conversely, a successful lung damage caused a significant lowering of endogenous sulfur dioxide production, and an increase in lipid peroxidation, free radical formation, oxidative stress and inflammation. Moreover, blockade of an enzyme that produces endogenous SO2 significantly increased the amount of lung tissue damage in the experiment. Conversely, adding acetylcysteine or glutathione to the rat diet increased the amount of endogenous SO2 produced and decreased the lung damage, the free radical formation, oxidative stress, inflammation and apoptosis.[27]


It is considered that endogenous sulfur dioxide plays a significant physiological role in regulating cardiac and blood vessel function, and aberrant or deficient sulfur dioxide metabolism can contribute to several different cardiovascular diseases, such as arterial hypertension, atherosclerosis, pulmonary arterial hypertension, stenocardia.[28]


It was shown that in children with pulmonary arterial hypertension due to congenital heart diseases the level of homocysteine is higher and the level of endogenous sulfur dioxide is lower than in normal control children. Moreover, these biochemical parameters strongly correlated to the severity of pulmonary arterial hypertension. Authors considered homocysteine to be one of useful biochemical markers of disease severity and sulfur dioxide metabolism to be one of potential therapeutic targets in those patients.[29]


Endogenous sulfur dioxide also has been shown to lower the proliferation rate of endothelial smooth muscle cells in blood vessels, via lowering the MAPK activity and activating adenylyl cyclase and protein kinase A.[30] Smooth muscle cell proliferation is one of important mechanisms of hypertensive remodeling of blood vessels and their stenosis, so it is an important pathogenetic mechanism in arterial hypertension and atherosclerosis.


Endogenous sulfur dioxide in low concentrations causes endothelium-dependent vasodilation. In higher concentrations it causes endothelium-independent vasodilation and has a negative inotropic effect on cardiac output function, thus effectively lowering blood pressure and myocardial oxygen consumption. The vasodilating and bronchodilating effects of sulfur dioxide are mediated via ATP-dependent calcium channels and L-type ("dihydropyridine") calcium channels. Endogenous sulfur dioxide is also a potent antiinflammatory, antioxidant and cytoprotective agent. It lowers blood pressure and slows hypertensive remodeling of blood vessels, especially thickening of their intima. It also regulates lipid metabolism.[31]


Endogenous sulfur dioxide also diminishes myocardial damage, caused by isoproterenol adrenergic hyperstimulation, and strengthens the myocardial antioxidant defense reserve.[32]



As a refrigerant


Being easily condensed and possessing a high heat of evaporation, sulfur dioxide is a candidate material for refrigerants. Prior to the development of chlorofluorocarbons, sulfur dioxide was used as a refrigerant in home refrigerators.



As a reagent and solvent in the laboratory


Sulfur dioxide is a versatile inert solvent widely used for dissolving highly oxidizing salts. It is also used occasionally as a source of the sulfonyl group in organic synthesis. Treatment of aryl diazonium salts with sulfur dioxide and cuprous chloride yields the corresponding aryl sulfonyl chloride, for example:[33]


Preparation of m-trifluoromethylbenzenesulfonyl chloride.svg


Proposed use in climate engineering


Injections of sulfur dioxide in the stratosphere has been proposed in climate engineering. The cooling effect would be similar to what has been observed after the large explosive volcano eruption of Mount Pinatubo in 1991. However this form of geoengineering would have uncertain regional consequences on rainfall patterns, for example in monsoon regions.[34]



As an air pollutant




A sulfur dioxide plume from the Halemaʻumaʻu vent, glows at night


Sulfur dioxide is a noticeable component in the atmosphere, especially following volcanic eruptions.[35] According to the United States Environmental Protection Agency,[36] the amount of sulfur dioxide released in the U.S. per year was:




A collection of estimates of past and future anthropogenic global sulphur dioxide emissions. The Cofala et al. estimates are for sensitivity studies on SO2 emission policies, CLE: Current Legislation, MFR: Maximum Feasible Reductions. RCPs (Representative Concentration Pathways) are used in CMIP5 simulations for latest (2013–2014) IPCC 5th assessment report.



































Year
SO2
1970
31,161,000 short tons (28.3 Mt)
1980
25,905,000 short tons (23.5 Mt)
1990
23,678,000 short tons (21.5 Mt)
1996
18,859,000 short tons (17.1 Mt)
1997
19,363,000 short tons (17.6 Mt)
1998
19,491,000 short tons (17.7 Mt)
1999
18,867,000 short tons (17.1 Mt)

Sulfur dioxide is a major air pollutant and has significant impacts upon human health.[37] In addition, the concentration of sulfur dioxide in the atmosphere can influence the habitat suitability for plant communities, as well as animal life.[38] Sulfur dioxide emissions are a precursor to acid rain and atmospheric particulates. Due largely to the US EPA’s Acid Rain Program, the U.S. has had a 33% decrease in emissions between 1983 and 2002. This improvement resulted in part from flue-gas desulfurization, a technology that enables SO2 to be chemically bound in power plants burning sulfur-containing coal or oil. In particular, calcium oxide (lime) reacts with sulfur dioxide to form calcium sulfite:


CaO + SO2 → CaSO3

Aerobic oxidation of the CaSO3 gives CaSO4, anhydrite. Most gypsum sold in Europe comes from flue-gas desulfurization.


Sulfur can be removed from coal during burning by using limestone as a bed material in fluidized bed combustion.[39]


Sulfur can also be removed from fuels before burning, preventing formation of SO2 when the fuel is burnt. The Claus process is used in refineries to produce sulfur as a byproduct. The Stretford process has also been used to remove sulfur from fuel. Redox processes using iron oxides can also be used, for example, Lo-Cat[40] or Sulferox.[41]




Sulfur dioxide in the world on April 15th, 2017. Note that sulfur dioxide moves through the atmosphere with prevailing winds and thus local sulfur dioxide distributions vary day to day with weather patterns and seasonality.


Fuel additives such as calcium additives and magnesium carboxylate may be used in marine engines to lower the emission of sulfur dioxide gases into the atmosphere.[42]


As of 2006, China was the world's largest sulfur dioxide polluter, with 2005 emissions estimated to be 25,490,000 short tons (23.1 Mt). This amount represents a 27% increase since 2000, and is roughly comparable with U.S. emissions in 1980.[43]



Safety





US Geological Survey volunteer tests for sulfur dioxide after the 2018 lower Puna eruption



Inhalation


Inhaling sulfur dioxide is associated with increased respiratory symptoms and disease, difficulty in breathing, and premature death.[44] In 2008, the American Conference of Governmental Industrial Hygienists reduced the short-term exposure limit to 0.25 parts per million (ppm). The OSHA PEL is currently set at 5 ppm (13  mg/m3) time-weighted average. NIOSH has set the IDLH at 100 ppm.[45] In 2010, the EPA "revised the primary SO2NAAQS by establishing a new one-hour standard at a level of 75 parts per billion (ppb). EPA revoked the two existing primary standards because they would not provide additional public health protection given a one-hour standard at 75 ppb."[37]


A 2011 systematic review concluded that exposure to sulfur dioxide is associated with preterm birth.[46]



Ingestion


In the United States, the Center for Science in the Public Interest lists the two food preservatives, sulfur dioxide and sodium bisulfite, as being safe for human consumption except for certain asthmatic individuals who may be sensitive to them, especially in large amounts.[47] Symptoms of sensitivity to sulfiting agents, including sulfur dioxide, manifest as potentially life-threatening trouble breathing within minutes of ingestion.[48]



See also



  • Sulfur trioxide

  • Sulfur–iodine cycle

  • National Ambient Air Quality Standards

  • Bunker fuel



References





  1. ^ Sulfur dioxide, U.S. National Library of Medicine


  2. ^ Lide, David R., ed. (2006). CRC Handbook of Chemistry and Physics (87th ed.). Boca Raton, FL: CRC Press. ISBN 0-8493-0487-3..mw-parser-output cite.citation{font-style:inherit}.mw-parser-output q{quotes:"""""""'""'"}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-limited a,.mw-parser-output .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}


  3. ^ https://echa.europa.eu/information-on-chemicals/cl-inventory-database/-/discli/notification-details/115657/1409763


  4. ^ abc "NIOSH Pocket Guide to Chemical Hazards #0575". National Institute for Occupational Safety and Health (NIOSH).


  5. ^ ab "Sulfur dioxide". Immediately Dangerous to Life and Health Concentrations (IDLH). National Institute for Occupational Safety and Health (NIOSH).


  6. ^ Cunningham, Terence P.; Cooper, David L.; Gerratt, Joseph; Karadakov, Peter B. & Raimondi, Mario (1997). "Chemical bonding in oxofluorides of hypercoordinatesulfur". Journal of the Chemical Society, Faraday Transactions. 93 (13): 2247–2254. doi:10.1039/A700708F.


  7. ^ Owen, Lewis A.; Pickering, Kevin T (1997). An Introduction to Global Environmental Issues. Taylor & Francis. pp. 33–. ISBN 978-0-203-97400-1.


  8. ^ Taylor, J.A.; Simpson, R.W.; Jakeman, A.J. (1987). "A hybrid model for predicting the distribution of sulphur dioxide concentrations observed near elevated point sources". Ecological Modelling. 36 (3–4): 269–296. doi:10.1016/0304-3800(87)90071-8. ISSN 0304-3800.


  9. ^ Marcq, Emmanuel; Bertaux, Jean-Loup; Montmessin, Franck; Belyaev, Denis (2012). "Variations of sulphur dioxide at the cloud top of Venus's dynamic atmosphere". Nature Geoscience. 6: 25. doi:10.1038/ngeo1650. ISSN 1752-0894.


  10. ^ Halevy, I.; Zuber, M. T.; Schrag, D. P. (2007). "A Sulfur Dioxide Climate Feedback on Early Mars". Science. 318 (5858): 1903–1907. doi:10.1126/science.1147039. ISSN 0036-8075. PMID 18096802.


  11. ^ Lellouch, E.; et al. (2007). "Io's atmosphere". In Lopes, R. M. C.; Spencer, J. R. Io after Galileo. Springer-Praxis. pp. 231–264. ISBN 3-540-34681-3.


  12. ^ Cruikshank, D. P.; Howell, R. R.; Geballe, T. R.; Fanale, F. P. (1985). "Sulfur Dioxide Ice on IO". Ices in the Solar System: 805–815. doi:10.1007/978-94-009-5418-2_55. ISBN 978-94-010-8891-6.


  13. ^ Europa's Hidden Ice Chemistry – NASA Jet Propulsion Laboratory. Jpl.nasa.gov (2010-10-04). Retrieved on 2013-09-24.


  14. ^ ab Müller, Hermann, "Sulfur Dioxide", Ullmann's Encyclopedia of Industrial Chemistry, Weinheim: Wiley-VCH, doi:10.1002/14356007.a25_569


  15. ^ Shriver, Atkins. Inorganic Chemistry, Fifth Edition. W. H. Freeman and Company; New York, 2010; p. 414.


  16. ^ WHITEHAVEN COAST ARCHAEOLOGICAL SURVEY. lakestay.co.uk (2007)


  17. ^ Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 0-08-037941-9.


  18. ^ Current EU approved additives and their E Numbers, The Food Standards Agency website.


  19. ^ "Practical Winery & vineyard Journal Jan/Feb 2009". www.practicalwinery.com. 1 Feb 2009. Archived from the original on 2013-09-28.


  20. ^ Sulphites in wine, MoreThanOrganic.com.


  21. ^ Jackson, R.S. (2008) Wine science: principles and applications, Amsterdam; Boston: Elsevier/Academic Press


  22. ^ Guerrero, Raúl F; Cantos-Villar, Emma (2015). "Demonstrating the efficiency of sulphur dioxide replacements in wine: A parameter review". Trends in Food Science & Technology. 42: 27. doi:10.1016/j.tifs.2014.11.004.


  23. ^ Chlorine Use in the Winery. Purdue University


  24. ^ Use of ozone for winery and environmental sanitation, Practical Winery & Vineyard Journal.


  25. ^ Tchobanoglous, George (1979). Wastewater Engineering (3rd ed.). New York: McGraw Hill. ISBN 0-07-041677-X.


  26. ^ Liu, D.; Jin, H; Tang, C; Du, J (2010). "Sulfur dioxide: a novel gaseous signal in the regulation of cardiovascular functions". Mini-Reviews in Medicinal Chemistry. 10 (11): 1039–1045. doi:10.2174/1389557511009011039. PMID 20540708. Archived from the original on 2013-04-26.


  27. ^ Chen S, Zheng S, Liu Z, Tang C, Zhao B, Du J, Jin H (Feb 2015). "Endogenous sulfur dioxide protects against oleic acid-induced acute lung injury in association with inhibition of oxidative stress in rats". Lab. Invest. 95 (2): 142–156. doi:10.1038/labinvest.2014.147. PMID 25581610.


  28. ^ Tian H. (Nov 2014). "Advances in the study on endogenous sulfur dioxide in the cardiovascular system". Chin Med J. 127 (21): 3803–3807. PMID 25382339.


  29. ^ Yang R, Yang Y, Dong X, Wu X, Wei Y (Aug 2014). "Correlation between endogenous sulfur dioxide and homocysteine in children with pulmonary arterial hypertension associated with congenital heart disease". Zhonghua Er Ke Za Zhi (in Chinese). 52 (8): 625–629. PMID 25224243.


  30. ^ Liu D, Huang Y, Bu D, Liu AD, Holmberg L, Jia Y, Tang C, Du J, Jin H (May 2014). "Sulfur dioxide inhibits vascular smooth muscle cell proliferation via suppressing the Erk/MAP kinase pathway mediated by cAMP/PKA signaling". Cell Death Dis. 5 (5): e1251. doi:10.1038/cddis.2014.229. PMC 4047873. PMID 24853429.


  31. ^ Wang XB, Jin HF, Tang CS, Du JB (16 Nov 2011). "The biological effect of endogenous sulfur dioxide in the cardiovascular system". Eur J Pharmacol. 670 (1): 1–6. doi:10.1016/j.ejphar.2011.08.031. PMID 21925165.


  32. ^ Liang Y, Liu D, Ochs T, Tang C, Chen S, Zhang S, Geng B, Jin H, Du J (Jan 2011). "Endogenous sulfur dioxide protects against isoproterenol-induced myocardial injury and increases myocardial antioxidant capacity in rats". Lab. Invest. 91 (1): 12–23. doi:10.1038/labinvest.2010.156. PMID 20733562.


  33. ^ Hoffman, R. V. (1990). "m-Trifluoromethylbenzenesulfonyl Chloride". Organic Syntheses.; Collective Volume, 7, p. 508


  34. ^ Clarke L., K. Jiang, K. Akimoto, M. Babiker, G. Blanford, K. Fisher-Vanden, J.-C. Hourcade, V. Krey, E. Kriegler, A. Löschel, D. McCollum, S. Paltsev, S. Rose, P. R. Shukla, M. Tavoni, B. C. C. van der Zwaan, and D.P. van Vuuren, 2014: Assessing Transformation Pathways. In: Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Edenhofer, O., R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel and J.C. Minx (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.


  35. ^ Volcanic Gases and Their Effects. Volcanoes.usgs.gov. Retrieved on 2011-10-31.


  36. ^ National Trends in Sulfur Dioxide Levels, United States Environmental Protection Agency.


  37. ^ ab Sulfur Dioxide. United States Environmental Protection Agency


  38. ^ Hogan, C. Michael (2010). "Abiotic factor" in Encyclopedia of Earth. Emily Monosson and C. Cleveland (eds.). National Council for Science and the Environment. Washington DC


  39. ^ Lindeburg, Michael R. (2006). Mechanical Engineering Reference Manual for the PE Exam. Belmont, C.A.: Professional Publications, Inc. pp. 27–3. ISBN 978-1-59126-049-3.


  40. ^ FAQ’s About Sulfur Removal and Recovery using the LO-CAT® Hydrogen Sulfide Removal System. gtp-merichem.com


  41. ^ Process screening analysis of alternative gas treating and sulfur removal for gasification. (December 2002) Report by SFA Pacific, Inc. prepared for U.S. Department of Energy (PDF) . Retrieved on 2011-10-31.


  42. ^ May, Walter R. Marine Emissions Abatement Archived 2015-04-02 at the Wayback Machine.. SFA International, Inc., p. 6.


  43. ^ China has its worst spell of acid rain, United Press International (2006-09-22).


  44. ^ Sulfur Dioxide[broken link] U.S. Environmental Protection Agency


  45. ^ "NIOSH Pocket Guide to Chemical Hazards".


  46. ^ Shah PS, Balkhair T, Knowledge Synthesis Group on Determinants of Preterm/LBW Births (2011). "Air pollution and birth outcomes: a systematic review". Environ Int. 37 (2): 498–516. doi:10.1016/j.envint.2010.10.009. PMID 21112090.CS1 maint: Multiple names: authors list (link)


  47. ^ "Center for Science in the Public Interest – Chemical Cuisine". Retrieved March 17, 2010.


  48. ^ "California Department of Public Health: Food and Drug Branch: Sulfites" (PDF). Archived from the original (PDF) on July 23, 2012. Retrieved September 27, 2013.




External links







  • Global map of sulfur dioxide distribution

  • United States Environmental Protection Agency Sulfur Dioxide page

  • International Chemical Safety Card 0074

  • IARC Monographs. "Sulfur Dioxide and some Sulfites, Bisulfites and Metabisulfites" v54. 1992. p131.

  • NIOSH Pocket Guide to Chemical Hazards

  • CDC – Sulfure Dioxide – NIOSH Workplace Safety and Health Topic

  • Sulfur Dioxide, Molecule of the Month












Popular posts from this blog

Bressuire

Vorschmack

Quarantine